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THEORETICAL NOTES

A Bayesian Model for Implicit Effects in Perceptual Identification
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Retrieving effectively from memory (REM; R. M. Shiffrin & M. Steyvers, 1997), an episodic model of
memory, is extended to implicit memory phenomena, namely the perceptual identification studies
reported in R. Ratcliff and G. McKoon (1997). In those studies, the influence of prior study was greatest
when words were presented most briefly and when forced-choice targets and foils were most similar. R.
Ratcliff and G. McKoon use these data to argue against models in which prior study changes a word’s
representation. A model in which prior study changes a word’s representation by adding context
information is fit to their data; at test, the model uses a Bayesian decision process to compare the
perceptual and context features associated with the test flash to stored traces. The effects of prior study
are due to matching extra context information and are larger when alternatives share many features,
thereby reducing noise that attenuates these effects.

In an implicit or indirect memory task, recent prior experience
influences performance on a task that requires only general knowl-
edge for completion, even when there does not appear to be
awareness of the recent experience. For example, studying a word
in a list improves identification of that word an hour later, when it
is presented briefly and masked, in what the participant is led to
believe is an unrelated task. A number of investigators have
obtained evidence suggesting that at least the largest part of this
effect is not due to a change in the quality of the sensory infor-
mation extracted from the test presentation (e.g., Masson & Mac-
Leod, 1996; Ratcliff & McKoon, 1997). Rather, Masson and
MacLeod (1996) suggested that the degraded sensory information
acts as a cue for the automatic retrieval of a prior study episode. It
is the retrieval of this episode that increases the probability of
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responding with the target. Alternatively, Ratcliff and McKoon
(1997) argued that prior study biases participants to respond with
previously studied words. We return to their view of bias shortly.

In the task of Ratcliff, McKoon, and Verwoerd (1989), a target
word (e.g., lied) was presented briefly on a computer screen (e.g.,
for 30 ms) and then masked (e.g., @@@@). Next, two words
appeared and remained on the screen until the participant identified
the flashed word by choosing between the two test words. Table 1
shows results from Ratcliff and McKoon's (1997) Experiment 1.
When the alternatives were visually similar (e.g., lied vs. died),
previous study of one member of the test pair led participants to
choose it, whether or not it had been flashed. However, there was little
effect of prior study when the aiternatives were visually dissimilar
(e.g., lied vs. sofa). The fact that the two bias conditions taken
together do not exceed the no-prime baseline is one line of evidence
suggesting that priming does not improve perception.

We have mentioned two critical effects: a bias that is symmet-
rical around baseline (usually interpreted as a failure to change
perception), and the difference between similar and dissimilar
choices (a finding that strongly constrains models). It is important
to note bounds on these findings. First, in his versions of the same
paradigm, Bowers (1999) has shown that dissimilar choice-words
produce a bias virtually as strong as that for similar choice-words.
Similar findings have been reported by Neaderhiser and Church
(1998). This alternate pattern of results may be due to slight
instructional differences (McKoon & Ratcliff, in press); it is con-
ceivable, for example, that studies showing strong effects for
dissimilar words might have induced participants to rely more
heavily on access to episodic memory traces. Second, it is some-
times possible to demonstrate perceptual gains in the present
paradigms, although the magnitude of the effect is smaller than



258 THEORETICAL NOTES

Table 1
Forced-Choice Results From Ratcliff and McKoon
(1997, Experiment 1)

Study condition

Target Distractor Neither

Similarity Condition studied studied studied
Similar (died vs. lied) .85 .66 75
Dissimilar (died vs. sofa) .83 .88 87

Note. From “A Counter Model for Implicit Priming in Perceptual Word
Identification,” by R. Ratcliff and G. McKoon, 1997, Psychological Re-
view, 104, p. 323. Copyright 1997 by the American Psychological Asso-
ciation. Adapted with permission of the author.

that found in Table 1 (Wagenmakers, Zeelenberg, & Raaijmakers,
2000). Our main goal in this article is to present a model for
Ratcliff and McKoon’s (1997) original pattern of results, although
we will take up possible accounts of the other findings later.

Ratcliff and McKoon (1997) presented an elegant counter model
to predict results involving perceptual identification. In their
counter model, the perceptual system generates evidence based on
the visual stimulus (e.g., the flashed word). Counters accrue the
perceptual evidence associated with the alternatives and noise
counts that are randomly assigned to the alternatives. As flash
duration is reduced, the perceptual system generates less diagnos-
tic evidence and more noise. When the counter for one of the
choices exceeds the other by a criterion number of counts, a
response is given. In this model, words inhabit a perceptual space
in which visually similar words are near each other. A studied
word tends to attract nondiagnostic counts that would otherwise
have been accrued by counters for its near neighbors (Ratcliff &
McKoon, 1997, do not present a model for the mechanism by
which this occurs). The attractive force is weak, so counts bound
for distant words are not captured.

Ratcliff and McKoon (1997) argue that their pattern of results
poses a challenge for existing models of word identification, such
as a logogen (Morton, 1969, 1970), or simple counter model. In a
logogen model, prior study raises the resting level of the logogen
for that word. Such an account does not explain why the advantage
should be reserved for similar, but not for dissimilar, alternatives.
More generally, Ratcliff and McKoon (1997) conclude,

The main reason that other existing models cannot explain priming
effects is the assumption that prior exposure to a word changes some
property of the representation of the word itself. . . . When a property
of the word itself changes, then processing of the word should always
show facilitation relative to processing of other words. (p. 339)

In this article, we demonstrate that such claims are too broad.
The bias results, and indeed the quantitative pattern of results
obtained by Ratcliff and McKoon (1997), can be predicted by a
model that assumes that priming does act to alter the word’s
lexical-semantic memory representation. We show that this is
possible by embedding such an assumption within a model in
which participants try to make the best possible decision, given
available data and other processing constraints. Such models have
been used successfully in other memory settings (e.g., Anderson,
1990; Anderson, Bothell, Lebiere, & Matessa, 1998; Anderson &

Schooler, 1991; McClelland & Chappell, 1997; Schooler & Ander-
son, 1997; Shiffrin & Steyvers, 1997, 1998).

We cast this normative model within a Bayesian framework, a
framework we have been using to develop a coherent account of
major explicit and implicit memory phenomena. Previous work fo-
cused on explicit memory in the form of recognition and cued recall,
and the model was termed retrieving effectively from memory (REM;
Nobel, Diller, & Shiffrin, in press-a, b; Shiffrin & Steyvers, 1997,
1998). The present word-identification task is quite different from
episodic memory tasks, but the use of a Bayesian decision process and
the way in which study produces changes in memory representations
are common to the two situations. In particular, we will demonstrate
that implicit effects in masked word identification follow directly
from the assumption that certain context and low-level features are
added to the lexical-semantic memory trace when the prime is stud-
ied. We shall show that because the effects of the additional stored
information are overwhelmed by the variability in the amount of
available information when the alternatives are dissimilar, the result-
ant model predicts much smaller effects of prior study for dissimilar
alternatives. We argue that a system acting in this way properly takes
into account {in a Bayesian sense) the prior probabilities of encoun-
tering words.

The REM Model in Brief

We begin with a brief description of the REM model that has
been developed to predict the phenomena of explicit memory. In
REM, memory images are represented as vectors of feature values.
The first time a new event (e.g., (4, 3,2, 1,..., 8, 3)) is stored in
memory, its image is incomplete and error prone {e.g., (3, 0,
1, 0,..., 5, 0); the number 0 indicates that no information is
stored). When an event is repeated, a new image is usually stored
for the new presentation; in addition, information is sometimes
added to one or more previous images of that event if the previous
images are similar enough. Thus, over developmental time, repe-
titions of inputs cause certain images to accumulate features and
become increasingly complete, at which point the model terms
them lexical-semantic images (e.g., (4, 2, 2, 3,..., 8, 1)). As
discussed below, it is critical for the model of implicit memory
effects that in most cases a feature, once stored, does not subse-
quently change; this is desirable because it prevents continual
storage of wrong information in general knowledge. Of course,
some correction mechanism is needed for feature values initially
stored incorrectly, so that over time lexical-semantic images tend
to store valid information. REM therefore assumes that correction
can occur in cases when attention is directed toward incorrectly
stored features, a state that will usually occur when some sort of
feedback provides pointers to the storage error. Over developmen-
tal time, this will happen often enough to correct errors in earlier
storage for images that continue to attract additional storage. We
therefore assume that lexical-semantic images contain mostly
complete and correct information.

Images include both content and context features. Some of the
content features describe the visual form of the word, whereas
others encode semantic information. The context features define
the setting or settings in which a memory image was constructed.
Accumulation of contexts over developmental time causes lexical—
semantic images to lose identification with any one context. The
probability that a given feature takes on a value j is termed P(V =
j). In the earlier implementations of REM, both context and con-
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tent feature values were drawn randomly from a geometric distri-
bution with parameter g:

P(V=j)=(0-gV g j=1..., (1)

Choosing features according to this geometric distribution results
in smaller feature values being more common than larger ones and
captures the intuition that feature values should vary in base rates.
Most predictions are not dependent on this assumption, however,
0 substituting binary or uniform distributions yields predictions
that are just as good as those based on the geometric distribution.
We will return to this point below.

In REM, Bayesian inference procedures determine the proba-
bility that a memory probe refers to a particular memory image. A
comparison between the probe vector and a memory vector yields
the number of features and their values that match and mismatch
between the two. These matches and mismatches are the inputs to
the inference procedures. Shiffrin and Steyvers (1997) developed
REM initially to predict the phenomena of episodic recognition
memory. Their model was able to handle such phenomena as the
list-strength effect (Ratcliff, Clark, & Shiffrin, 1990), the mirror
effect (e.g., Glanzer & Adams, 1990), and the normal receiver-
operating characteristic (normal ROC) slope effect (e.g., Ratcliff,
McKoon, & Tindall, 1994), phenomena that had posed significant
problems for existing models. Here we apply these principles in
the development of a model of implicit memory.

REMI: A Model of Implicit Memory

Theories within the Bayesian framework borrow from Ander-
son’s (1990) rational analysis approach the strategy of developing
normative models: These make the best decisions possible given
certain processing limitations and given data that may include
error resulting from imperfect storage and perception. Such an
approach produces a mathematically sensible model, but the prob-
ability calculations involved do not strike most observers as plau-
sible neural or mental behavior. One justification for such a model,
therefore, is that the memory-perceptual system adapts to conform
to optimal procedures over evolutionary and developmental time
scales. Thus, the system acts as if it were carrying out a Bayesian
analysis, whatever the actual neural or mental basis.

Presumably, the primary objective of the systems tapped by
masked word identification is the identification of objects in the
world based on limited perceptual data. Consider the normative
solution to the problem of identifying an object from a set of
possible alternatives, given limited perceptual data. Let p,(w;) be
the prior probability that an object (in this case a word) w; would
be encountered. Let p(d|w,) be the probability that perceptual data,
d, would be observed given that w; is in the environment. These
probabilities can be combined using Bayes’s rule to calculate
p(w,|d), the probability that w, is in the environment, given the
perceptual data (here j indexes all words):

Po(wi)P(d!wi)

~ . 2
>, po(w)p(d|w) @

p(wid) =

This is essentially identical to the adaptive control of thought,
rational’s (ACT-R’s) pattern recognition equation (Anderson &
Lebiere, 1998; Anderson & Matessa, 1992). The similarity of the
two recognition equations is not surprising, because a Bayesian

solution cast at such a high level of abstraction would have to take
this form. We see this as a strength of the normative approach
outlined above because irrespective of who does the development,
models developed following these prescriptions will tend to more
or less converge onto the same solution.

What is critical for handling Ratcliff and McKoon’s (1997) data
is that the prior probability that the word would be observed enters
into the choice. The question then is how to set this prior proba-
bility. It is important to distingnish how the system operates
because of developmental learning from how it adapts to local
constraints (such as the experiment-defined rules that the two
choices are equally probable, or that the conditional probability
that a prime will be the target is .50). At a more superficial level
of operation, the participant imposes control processes in an at-
tempt to be responsive to local constraints. A simple example
would be setting a response criterion so that there is a tendency to
choose a word remembered from the studied list, if such words are
indeed targets at a higher than chance rate. Presumably, at a deeper
level the system will be responsive to contingencies that are typical
of lifelong environmental events (e.g., Anderson, 1990).

An example of the kind of contingency to which the system
ought to exhibit sensitivity is recency, because recent words are
more likely to appear again (Anderson & Schooler, 1991). If, for
this reason, the system does exhibit a bias to choose a recently
studied word, this would help explain one of the findings of
Ratcliff and McKoon (1997). Of course, in a given model, it is
necessary to provide a process by which the system can know how
recently a choice has been encountered. The pattern of results
obtained by Ratcliff and McKoon (1997), however, showed more
than a sensitivity to recency: The bias for choosing a recently
studied word was attenuated when the alternatives were dissimilar.
This too is consistent with the just-described normative solution,
because in the dissimilar case there is more diagnostic data to
differentiate the two alternatives. A feature of a Bayesian analysis
is that the influence of the prior decreases as the amount of data
increases.

The above analysis illustrates how Bayesian principles could be
used to predict some of the qualitative features of the results
observed by Ratcliff and McKoon (1997). The next step is to
produce a process model that will approximate the operation of
these principles. We lay out such a model in the following sec-
tions, which we apply a model loosely based on REM to three
perceptual identification tasks studied by Ratcliff and McKoon
(1997). For convenience, we term the model retrieving effectively
from memory, implicit (REMI). We demonstrate that the model
can predict the Ratcliff and McKoon (1997) results, including the
findings concerning the similarity of alternatives in a forced-
choice task. Certain mathematical and computational details are
provided in Appendixes A and B.

REMI Applied to a Forced-Choice Task

Applying the normative model to a two-alternative forced-
choice (2 AFC) task is straightforward. Let the vectors represent-
ing the target and foil be termed respectively ¢t and f. The Bayesian
decision system then compares the perceived vector with the two
choice-word vectors and calculates the probability that the choice
word we have designated t is in fact the target T, in the following
version of Equation 2:
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po(t = T)p(djt = T)
po(t=T)p(dt=T) + po(f = T)p(dlf = T)~

p(t=Td) = 3
In this equation, the priors (indicated by the subscripts) refer both
to those implied by the experimental procedure and to those taking
recency into account (by storage of context features in lexical-
semantic traces at study). The system should choose the target
when p(t = T|d) exceeds .5, and half the time when p(t = T|d)
= 5.

We next develop a process model that implements the normative
solution. In a task presenting alternatives after a (masked) near-
threshold presentation, we assume a first stage of sensory process-
ing that produces some visual features appropriate for the stimulus
and some noise features presumably due to internal noise and the
actions of the mask; the probe of memory consists of these features
and some context features. We take context to be a combination of
internal and external cues. Examples of internal context cues might
be mood or a memory from lunch. External cues might be the
posters in a room, the hum of a fan, or a word’s font.

We propose that the probe (the sensory features extracted from
the presentation plus some current context) is compared in parallel
with the traces in memory. In a forced-choice task, the decision
will be restricted to the two alternatives. Thus, the probe vector
(consisting of veridical, noise, and current context features) is
compared with the lexical-semantic vectors for the two alterna-
tives: The choice is based on the better of the two matches, berter
defined in the sense of Equation 3.

The effects of prior study are modeled in the following way:
When a word is studied, the lexical-semantic trace for the word is
contacted, and there is a tendency for features of the current
presentation that are not already in the trace to be stored in that
trace. Because the semantic features for a word are already known,
these are not stored. What might be stored are context and low-
level features (like font) that are unique to the current presentation.
Because these features tend to be part of the probe at the time of
test (as in a contextual drift model for context change; Estes, 1955;
McGeoch, 1932; Mensink & Raaijmakers, 1988), they produce
additional matching features for studied words. These extra
matches are a form of bias because they add to the evidence for
both target and foil, whichever had been studied, and do not affect
the features extracted from the target flash. Thus, this source of
bias toward choosing a word that had been studied is independent
of any possible perceptual benefit that prior study might or might
not have conferred and is therefore consistent with the assumption
of the counter model that prior study does not increase the amount
or quality of visual information extracted from the flash (Masson
& MacLeod, 1996, also made this point).

For purposes of constructing a simulation model, these various
assumptions may be simplified and made concrete as follows.
First, we distinguish diagnostic and nondiagnostic feature values.
Any feature that has the same value for the two choice-words
cannot provide differential evidence, regardless of what is per-
ceived, and hence is termed nondiagnostic and is ignored. Con-
sider next the visual part of each vector, ignoring context. Assume
there are L visual features in all. Assume there are L, diagnostic
visual features for dissimilar choices and L, diagnostic visual
features for similar choices (L will be larger than L,, which will be
larger than L ). The nondiagnostic features are irrelevant for either
similar or dissimilar conditions, so the visual vectors for t and f,

consisting of the L, and L, diagnostic features in the dissimilar and
similar conditions respectively, are filled with integer values
drawn from a distribution P(V = j) that is geometric with param-
eter g (see Equation 1). A vector, d, representing the features
perceived from the flashed target in the diagnostic positions, is
constructed as follows: For each flash duration there is some
probability that the ith visual feature, ¢, of the target vector will be
accurately copied to the ith position of the vector, d, that represents
the flashed word. Features of the flashed word that are not copied
are filled with random features drawn from a geometric distribu-
tion of Equation 1 with parameter g. The vector of perceived
features, d, is matched against the lexical-semantic target vector,
t, and the foil vector, f. For each of t and f, the result of visual
matching is a set of matching and mismatching features, with
particular values. These values are used to calculate the likelihoods
for each alternative, termed p(d|t) and p(dlf) in Equation 3.
Consider next context features and context matching. Such
features and their matching are assumed to determine the prior
probabilities, py(f) and py(H) in Equation 3. Although there are a
number of potentially complex ways in which one could charac-
terize context matching (corresponding to the matching of visual
features), for present purposes it is sufficient to simplify greatly
and assume that a choice-word that has been studied has a prob-
ability a of contributing exactly one extra matching feature. If
present, such a matching context feature is assumed to contribute
some fixed amount of evidentiary value in favor of that alternative.
The next step is to take the matching values and calculate the
likelihood values. At this point, two variants of the model must be
considered. The critical issue is whether the values of the matching
features should be taken into account. In the REM models used for
episodic memory, matching of rare feature values provided more
evidence than matching of common feature values. This assump-
tion fits well with the Bayesian justification for the present ap-
proach. However, calculating different probabilities for different
feature values is asking quite a lot of the neural-mental machinery
that implements the present system; it would clearly be much
simpler for the system to count the number of matches irrespective
of their values. We have implemented both versions, and both
produce adequate predictions for present data sets. The version
taking the values into account must be simulated. For the version
simply counting matches, it is possible to derive analytical predic-
tions, as shown in Appendix A; it is this version that we describe
in this article. For this version, the likelihood term in Equation 3 is

M L'-M
paw) =[] p. 1 po )]

i=1 i=1

where w refers to one of the choice words (t or f), d refers to the
vector of perceived feature values, p, is the probability that there
will be a match between a feature value for that choice word and
the corresponding feature value in the perceived vector conditional
on the choice-word actually being the target, p,, is the probability
that there will be a mismatch between a feature value for that
choice word and the corresponding feature value in the perceived
vector conditional on the choice word being the target, M is the
number of diagnostic feature values that match for that choice
word, and L’ is the number of diagnostic features in w.
Consider next the prior probability, p,, which we set equal to
PorPor» Where the first term refers to the factors in place in the test
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setting, including differential probabilities of testing the two alter-
natives, payoffs, instructions, and so forth, and the second refers to
differences found in the lexical representations of the two alterna-
tives. The experimental design has been chosen to make the two
alternatives equally likely, so poz is set to .5 for both alternatives.
We have assumed that with probability « the effect of prior study
is to add one context-matching feature to the lexical representation
of the studied word. It is convenient to assume that the evidentiary
value of such an extra context feature is equal to that for one visual
feature. Thus, an alternative whose lexical trace has an extra
context feature that does not match that in the current test envi-
ronment has p,; = p,, and an alternative with an extra context
feature that does match has p,, = p,,,. Because p,, is larger than p,,
it is quite obvious from Equations 3 and 4 that the alternative with
the larger number of matching features (including the visual fea-
tures and the extra context feature) will have the higher probability
and hence be the one chosen in a maximum-likelihood decision.
Thus, the maximum-likelihood decision rule is quite simple:
Choose the alternative with the greater number of matching fea-
tures; if the number is tied, guess with probability .5.

Although this simple rule combines the two kinds of evidence,
to maintain contact with prior formulations such as the rational
analysis of cognition (Anderson, 1990) it is useful to keep in mind
that the features are actually of two kinds: L’ visual features that
act as the likelihood, and one context feature that determines the
prior.

Given this simple decision rule, the probability of a correct
choice requires only the calculation of the probabilities that the
target has more matches than the foil, termed P (C), P(C), and
PA{C) for neither studied, target studied, and foil studied, respec-
tively. The formulas for calculating these probabilities are given in
Appendix A. To illustrate the model, the distribution of the dif-
ference between the number of matches for the target and the foil
is graphed in Figure 1 for the neither-studied case and for the
foil-studied cases. The distribution to the right of zero, plus one
half of the zero value, is the probability correct in each case. Panel
A shows the difference distributions for the similar and dissimilar
cases, assuming neither choice had been studied. Panel B repeats
the similar distribution from Panel A, and also shows the distri-
bution when the foil had been studied. It can be seen that the study
of a foil simply shifts the distribution a fraction to the left. If the
target had been studied, the distribution would have shifted right-
ward instead. Panel C is similar to B but shows the situation for
dissimilar words. The implications of the differences between
similar and dissimilar choices are discussed next.

The Interaction Between Similarity and Prior Study

Why prior study influences decisions between similar items
more than dissimilar ones is fairly easy to understand with the help
of Figure 1. The dissimilar condition has more diagnostic features.
Diagnostic features are those that differ between f and t. For
example, if we take letters to be features, when the alternatives are
lied and died, only the [ and d are diagnostic. When the alternatives
are lied and sofa, all of the letters are diagnostic. (In a more
realistic example, even the dissimilar condition will have some
nondiagnostic features.) The diagnostic features are the only fea-
tures we need to be concerned with in a forced-choice task,
because a common feature, such as d in the lied—died example, will
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Figure 1. (A) Distributions of the number of perceived diagnostic fea-
tures that match the target minus the number that match the foil. Filled
circles illustrate the case when the alternatives are similar; open circles
when the alternatives are dissimilar. (B) For the similar alternative case:
Filled circles illustrate that the effect of studying the foil is to add (part of)
a match, thereby shifting the difference distribution to the left and changing
the probability of choosing the target because the area to the right of zero
decreases. Studying the target would instead cause the distribution to shift
right. (C) For the dissimilar case: The effect of study is like that for Panel
B, but the change in choice probability is less because the dissimilar
distribution has higher variance.

either match the perceived vector for both alternatives or will
mismatch the perceived vector for both alternatives. In either case,
the matching result provides no differential evidence favoring
either alternative.

Because the similar condition has fewer diagnostic features, its
difference distribution is narrower than that for the dissimilar
condition (as depicted in Panel A). The critical point, however, is
that the positive or negative shift of the distribution due to the
possible presence of a matching context feature is of the same size
regardless of the similarity between the choices (as depicted in
Panels B and C). The figure makes it clear that such a constant
shift will have a greater impact on P(C) (i.e., the portion of the
distribution at or above zero) for the similar case, when there are
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fewer diagnostic features. In effect, the match of context is
weighted more strongly when there is little other evidence to
consider. Consider two extreme cases: If the choice depended on
a single diagnostic visual feature, then the addition of an extra
match because of context would markedly affect the decision; if
the choice depended on 1,000 visual features, the addition of an
extra match because of context would not noticeably affect the
decision. In short, the exira matching feature behaves just like a
weak prior in a Bayesian inference.

Panel A of Figure 2 shows parametric data from Ratcliff and
McKoon (1997, Experiment 5). They varied flash time, whether
the alternatives were similar or dissimilar, and which, if either, of
the alternatives were studied. Note that for the similar conditions
the effects of prior study are present at all flash times, even when
performance is near chance. For the dissimilar alternatives, there is
some bias at the shorter flash times, but next to none at the longest
flash time.

We fit REMI to the forced-choice data from Ratcliff and Mc-
Koon's (1997) Experiment 5 with the program TORUS (Rabino-
witz, 1995), which minimizes the total sum of squared error. Panel
B of Figure 2 shows the best fit to the data. The model fit depends
on seven parameters, whose best fitting values are given in Ta-
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Figure 2. (A) Data from Ratcliff and McKoon’s (1997) Experiment 5:
Circles illustrate dissimilar choices, and squares similar choices. In each of
these conditions, upper points represent target study, middle points no
study, and lower points foil study. (B) The fit of REMI to the data shown

in Panel A (parameters are given in the first column of Table 2).

ble 2. The first two parameters are the number of diagnostic
features for the dissimilar (L) and similar (L,) alternatives. The
third, «, is the probability of an additional matching context
feature for a studied word. Parameters s,o, S50, and 54, are the
probabilities of seeing a feature at the three flash times of 10, 20,
and 40 ms, respectively. The last parameter, g, governs the geo-
metric distribution of features for the target, foil, and perceptual
noise, and therefore determines the probability that a feature value
resulting from perceptual noise will match a visual feature value of
a word by chance. The specific choice of the geometric distribution
is critical only for those applications involving word frequency
(because these depend on the frequency of various features). For
the other applications, uniform feature distributions result in fits
that are as good as those reported here.

The fit captures the qualitative patterns in the data: In particular,
the effects of prior study are predicted to be larger when the
alternatives are similar than when they are dissimilar. Also, as
flash duration increases, bias decreases. Table 3 shows the pre-
dicted and observed performance. The influences of prior study for
the studied conditions are reported in the Data bias and REMI bias
columns. Bias is calculated by subtracting baseline performance
(i.e., the no-study condition) from performance in the studied
conditions. To get more stable estimates of this bias, Table 4
shows the average of the magnitude of the bias observed when the
foil was studied and when the target was studied. The bottom row
of Table 4 shows whether the model overestimates (positive val-
ues) or underestimates (negative values) the bias observed in the
data. At a 10-ms flash time, the model exhibits too much bias when
the alternatives are dissimilar and too little when they are similar.
It should be .noted, however, that at 20-ms flash duration the
predictions slightly underestimate the bias for the dissimilar alter-
natives. Additional evidence suggests a small effect of prior study
in the dissimilar case. Masson (personal communication, June 7,
1997) has run experiments like those of Ratcliff and McKoon
(1997). He found that when the flashed word had been studied, the
probability of correctly choosing that word over a dissimilar al-
ternative was .78, and for unstudied words it was .76. Though not
statistically significant, the amount of bias that Masson (personal
communication) observed is consistent both with the small amount
of predicted bias and with that found in Ratcliff and McKoon’s
(1997) data.

Extensions to Word Frequency Effects

Ratcliff and McKoon (1997) carried out post hoc tests to exam-
ine the effect of word frequency. They found high-high (HH)
frequency pairs produced almost equal performance to low—low
(LL) frequency pairs, but in mixed pairs the high frequency alter-
native tended to be chosen. The present model comes close to
predicting this pattern, based on the assumption that high fre-
quency words have more common features, that is, feature values
generated with a higher value of g than that for low-frequency
words (Shiffrin & Steyvers, 1997). More common feature values
tend to be matched more often by the visual noise in the perceived
vector. Thus in mixed pairs, extra (chance) matches favor the high
frequency word. However, in same-frequency pairs (HH or LL)
there is only a slight effect: The extra matches for high frequency
pairs add a little more noise, leading to a very slight advantage for
LL pairs. These data and the predictions with the assumptions that
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Table 2
Best Fitting Parameters of REMI for Forced Choice (FC),
Yes—No, and Naming

FC feature

Parameter FC frequency FC revised Yes~No Naming
L, 44 44 44
L, 14 14 14 14 0.14
g 04 04 04 0.4
& 0.36 0.36
gu 0.43 0.43
u 4
Say 0.073
Sig 0.00913
520 0.05161 0.209
S28
S3g 1173
S35 0.23
Sa0 0.1306
a 0.4411 0.874 04411 0.85
oy 0.709
L 27 55 55
Cre 10
Cyn 15
Cre 24
b 0.75
Neighborhood 100
Size

Note. A blank cell indicates that the parameter of that row does not affect
the model of that column. REMI = retrieving effectively from memory,
implicit.

the value of g for high-frequency words is .43, that the value of g
for low-frequency words is .36, and that the value of s is .073, are
shown in Table 5.

The good fit to the data in Table 5, however, is not the whole
story. The post hoc tests carried out by Ratcliff and McKoon
(1997) had little power, and subsequent data collected by Bowers

(1999), by Wagenmakers et al. (2000), and by McKoon and
Ratcliff (in press) demonstrated a small but statistically reliable
advantage for HH pairs over LL pairs (perhaps of 2-4%). This
advantage cannot be fit by the present model. (In fact, if a different
model were used, more like the REM model of Shiffrin and
Steyvers (1997), in which the diagnosticity of feature matches is
taken into account, the predicted advantage of LL pairs would be
even larger). Thus, the advantage of HH pairs over LL pairs is
outside the present model. After our discussion of the REMI
models of perceptual identification in yes—no and naming, we will
discuss a revised version of the forced-choice model that can
predict the effects of word frequency (and other variables).

The REMI Model Applied to a Yes—No Task

In a yes-no paradigm, a word is flashed and masked, a test word
is presented clearly, and the participant says whether the flashed
word and the test word were the same. In Ratcliff and McKoon’s
(1997) experiments, the test word was the flashed word, a word
that was visually similar to the flashed word, or a word that was
visually dissimilar to the flashed word; in addition, they varied
whether the test word had been previously studied.

We adopt a decision model similar to that used for forced
choice: The perceived vector is compared with the alternatives in
memory, but the decision is based on the matches restricted to the
single test word (in forced choice, the decision was restricted to the
matches for the two choices). Thus the term py(w)p(diw) is eval-
uated, where w represents the test word and d the perceived vector.
Again we represent the effect of prior study in the term py(w):
There is one extra context feature and this matches the test item, if
the test item had been studied, with probability o. This context
match is taken into account in this prior, and the effects of
perception are represented in the likelihood term, p(djw). If the
product of the prior and likelihood exceeds a criterion, then the
system decides that the test word was flashed. As in the forced-

Table 3
Results From Ratcliff and McKoon (1997, Experiment 5) and REMI Predictions
Data REMI

Study Flash Similarity Data REMI bias bias
Target 10 Similar 0.585 0.5860 0.076 0.066
Neither 10 Similar 0.509 0.5200 0.0000 0
Foil 10 Similar 0411 0.4527 ~0.098 —0.0673
Target 10 Dissimilar 0.567 0.5740 0.029 0.0383
Neither 10 Dissimilar 0.538 0.5357 0 0
Foil 10 Dissimilar 0.536 0.4966 ~0.002 —0.0391
Target 20 Similar 0.67 0.6689 0.036 0.0597
Neither 20 Similar 0.634 0.6092 0 0
Foil 20 Similar 0.558 0.5430 ~0.076 —0.0662
Target 20 Dissimilar 0.719 0.7215 0.058 0.0318
Neither 20 Dissimilar 0.661 0.6897 0 0
Foil 20 Dissimilar 0.643 0.6543 ~0.018 -0.0354
Target 40 Similar 0.804 0.7960 0.058 0.0444
Neither 40 Similar 0.746 0.7516 0 4}
Foil 40 Similar 0.688 0.6948 —0.058 —0.0568
Target 40 Dissimilar 0.879 0.9027 0.005 0.0155
Neither 40 Dissimilar 0.874 0.8872 0 0

Foil 40 Dissimilar 0.884 0.8672 0.01 -0.02

Note. REMI = retrieving effectively from memory, implicit.
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Table 4
Average Bias in Ratcliff and McKoon (1997, Experiment 5) and REMI Predictions

10 20 40
Source Dissimilar Similar Dissimilar Similar Dissimilar Similar
Data 0.0155 0.0870 0.0380 0.0560 0.0075 0.0580
REMI 0.0387 0.0667 0.0336 0.0630 0.0178 0.0506
Error 0.0232 —0.0204 —0.0044 0.0070 0.0103 —0.0074

Note. REMI = retrieving effectively from memory, implicit.

choice case, this decision rule comes down to counting matching
features, including the extra context-matching feature, if there is
one. There is a critical difference from the forced-choice situation,
however: Because there is only a single test word, all L visual
features are diagnostic. Thus the decision rule counts all matches;
if the total count exceeds a criterion, Cyy, a decision is made that
the test word was flashed. Because only some features were
diagnostic in forced choice, for both similar and dissimilar condi-
tions, the parameter L in yes-no that represents total vector length
must be estimated (and is expected to be larger than L,). The
parameters L, and L, still play a role, because they define the
similarity (i.e., feature overlap) between the flashed word and
similar or dissimilar test words. The values of these two parame-
ters were carried over from the fit to the forced-choice data.
Finally, a new flash time parameter, s,,, corresponds to the 30-ms
presentation time used in Ratcliff and McKoon’s (1997) Experi-
ment 8. The value of 55, was constrained to be between the values
of s,, and s4, that were obtained in the fit to the forced-choice
results. The parameter values g and a were carried over from the
fit of the forced-choice model. The best fitting parameter values
are given in Table 2. The mathematical and computational details
are given in Appendix B.

Table 6 shows the results from Ratcliff and McKoon (1997,
Experiment 8) along with the REMI fits to the data. The first
column shows the relation of the test word to the flashed word. The
Study column indicates whether the test word had been studied.
The remaining columns show Ratcliff and McKoon’s (1997) data
and the fits of REMI. The fit looks reasonable, though the model
slightly underestimates the effect of prior study when the flashed
word and the test word are the same, and overestimates this effect
when the test word is similar (lied) or dissimilar (sofa) to the
flashed word (died).

Table 5

Hllustrative Word Frequency Effects in the REMI Model
Target Foil

frequency frequency Model Data
Normal Normal 701
High High 697 701
Low Low 705 .696
High Low 766 727
Low High 627 613

Note. g, = 43 and g, = .36., s = .073. Collapsed data from Ratcliff and
McKoon (1997). REMI = retrieving effectively from memory, implicit.

An Alternative Interpretation of the REMI Model for
Forced Choice and Yes—No

We have suggested that the perceived vector is compared with
the set of lexical-semantic images, with a subsequent restriction to
the two images presented in forced choice, or the one image
presented in yes-no. Alternatively, the perceived vector could be
held in some form of visual short-term memory until the alterna-
tives are presented. The alternatives could then be read, their
lexical-semantic images contacted, and some of the information
found in those images, including context, retrieved. In this model,
the perceived vector would be compared with the vectors con-
structed when the alternatives are read. For present purposes, these
models make identical predictions, but the conceptual basis for the
models is different. In the alternative conception prior study has its
effect when the alternatives are presented, rather than in associa-
tion with the flash, so future research could provide tests of the
distinction.

REMI Applied to a Naming Task

In a typical threshold-naming paradigm, a word is flashed and
masked, and the participant attempts to name the word. The REMI
model for naming is very similar to the model of forced choice. In
naming, the vector of perceived and context features is compared
against all the lexical-semantic images in memory, as before, but
all of these are relevant instead of just the two (forced choice) or
one (yes—no) presented alternatives. The probability that any par-
ticular word was flashed is given by Equation 2, where the sum in
the denorminator is taken over the words in the lexicon. The word
most likely to have been presented is the one with the highest
number of matches to the perceived vector. However, in a recall
task there are good reasons not to emit the word with the highest

Table 6
Data From Ratcliff and McKoon (1997, Experiment 8), and
REMI Predictions

Decision

word Study Data REMI
Same No .70 0.699
Same Yes 77 0.741
Similar No 51 0.516
Similar Yes 55 0.568
Dissimilar No 21 0.140
Dissimilar Yes 23 0.176
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number of matches unless the number of matches exceeds a
criterion, Cr. When the number of alternative responses is very
high, as it is in a naming task, the probability of a correct identi-
fication is very low unless many features are perceived correctly.
Thus, if the best alternative from the lexicon has only a few
matches to the perceived vector, the response emitted has a very
low probability of being right.

We believe that participants in naming tasks implicitly assume
that emitted responses should have a reasonable chance of being
correct. We therefore assume that a criterion number of matches
must be exceeded before a response is emitted. This will ensure
that the responses are correct on an acceptable proportion of the
trials. We have described this process as a purely explicit one, but
it may be that the system simply does not provide an alternative to
be emitted unless a criterion is reached. By preventing the system
from always making a response, the criterion functions like the
recall criterion in the rational analysis of memory (Anderson,
1990), in which when the expected gain of retrieving an image fell
below the expected costs of processing it, it was not worth
retrieving.

Predicting naming performance requires specifying the similar-
ity structure of the lexicon because our model depends on feature
overlap. That is, the number of matches for various words in the
lexicon will depend on the number of features shared between the
flashed word and each entry in the lexicon. The question is how to
produce such a specification without introducing an explosion of
parameters. One approach is to assume that the similarities of these
images to the target are distributed according to Zipf’s law (Ijiri &
Simon, 1977). A close approximation of Zipf’s law is f{j) = r/*,
where j is the rank (e.g., the most similar word, second most
similar, etc.), fj) is the similarity of the word with rank j, & is a
constant, and r is a scale factor. Such a system has only a few very
similar words and many dissimilar ones. In Appendix C, we
present an analysis of words like those used in Ratcliff and
McKoon’s (1997) study, showing that Zipf’s law provides a good
approximation.

Predictions for naming were obtained by simulation: To start, a
target vector of length L was randomly generated with values
drawn from a geometric distribution with parameter g. Unless
otherwise noted, the parameters were carried over directly from the
previous simulations. Each target had » near neighbors, and 100-n
distant neighbors. Near neighbors are words that are as similar to
the target as the similar alternative in the forced-choice task.
Ratcliff and McKoon (1997) referred to the group of a word’s near
neighbors as its “cohort.” Because the parameter r in Zipf’s law
equals the similarity of the most similar item, r was set equal to
L — L thus, each near neighbor shared L — L, features with the
target. The similarity of the remaining distant neighbors fell off as
a function of rank, according to Zipf’s law, with b set to .75. For
example, if there were 3 near neighbors, each would share L — L
features with the target. The first distant neighbor would share f2)
features, the second f{3) features, and so on.!

Next, a vector of perceived features, d, was constructed as in the
other models. The flash-time parameter, s, corresponds to the
35-ms presentation time used in Ratcliff and McKoon’s (1997)
Experiment 6. The value of 5,5 was constrained to be between the
values of sy, and s,, obtained from the fit of the yes-no and
forced-choice REMI models, respectively. The perceived vector d
is compared against the target, t, and against the 100 lexical-

semantic images that represent the target’s neighborhood. The
response selected is the image with the largest number of matches
if that number exceeded Cgc, or else no response is given. Some
of the simulations modeled conditions in which the target or one of
the near neighbors was studied. To the vector representing any
studied item, an extra context feature that matches current context
was added with probability «; the value of a was initially set to
that used in the previous simulations.

Ratcliff and McKoon (1997) list a series of effects that a model
of naming should explain: (a) Studying a target should increase the
probability of identifying it; (b) studying a similar word should not
increase the probability of identifying the target; (¢) words with
larger numbers of near neighbors should be identified less well
than those from smaller neighborhoods; (d) high-frequency words
should be better identified than low-frequency words; and (e)
low-frequency words should show greater priming effects than
high-frequency words.

In coming to this picture of word naming, Ratcliff and McKoon
(1997) collapsed responses from many different conditions and
experiments. The naming simulations depend on critical assump-
tions about the structure of the lexicon (e.g., the parameter g, used
to generate high-frequency words, the numbers of near and distant
neighbors, etc.) and on the details of Ratcliff and McKoon’s
(1997) analyses (e.g., the exact proportion of high-frequency
words included, the number of near neighbors, etc.). Given these
complexities, our aim is not to give a precise fit to Ratchiff and
McKoon’s (1997) data, but rather to show that REMI’s behavior
follows, for the most part, Ratcliff and McKoon’s (1997) broad
prescriptions for how a model for naming should behave.

We carried out 27 naming simulations by fully crossing the
variables of study (study target, study similar, or study neither),
target frequency (low, normal, or high), and neighborhood size
(2,7, or 15 near neighbors). We ran the simulation 1,000 times for
each combination of these variables. The responses were grouped
into the four categories used by Ratcliff and McKoon (1997):
correctly naming the flashed target, saying nothing at all, intruding
with the similar alternative used in the forced-choice paradigm, or
intruding with some other word. One of the near neighbors was
randomly selected as the similar alternative, so if another of the
near neighbors was chosen it was grouped in the other category.
Table 7 shows data from their Experiment 6 broken into these
categories. The model was fit to the data (by hand) with parameter
values constrained by the results of the 2AFC, yes—no, and word
frequency applications. There were two main problems with the
predictions. First, the predicted effect of prior study was smaller
than that observed (about 5% as compared with 14%), and there
were too many intrusions of the similar alternative (about 5% as
compared with 1%). The predictions can be brought into line with
the data by adjusting the values of two parameters: raising s, from

! Appendix C gives empirical estimates of r and & (e.g., 2.5 and .253,
respectively), whereas in the simulations, we used values of 41 and .75. For
REM], similarity is measured in terms of the number of shared features,
whereas for the word analysis, similarity is measured in terms of a rough
measure of letter shape. For REMI, similar items share 75% (41 of 55) of
the features. For the word analysis, the maximal level of dissimilarity is 20,
so differing by 2.5 in that metric means that similar words share 88% of
letter shape.
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Table 7
Results of Ratcliff and McKoon’s (1997) Experiment 6
Response
Study Target Similar Other
Target 42 .01 .14
Similar 28 .03 .19
Neither 27 .01 .19

.13 to .23, and raising o from .406 1o .85. These parameter values
lead to the simulation results presented in Table 8, which are more
in line with the data. One interpretation of these changes is that the
forced-choice and yes-no tasks introduce additional noise that is
not present in naming. Such noise could be perceptual because, in
forced choice and yes—no, the presentation of the alternatives could
cause additional interference, or could be due to forgetting because
of the time delay until the alternatives are presented and read.
Tables 9, 10, and 11 show the results of the REMI naming
simulations.

Ratcliff and McKoon (1997) showed that the probability of
naming the target falls off as the number of neighbors increases
and the target’s word frequency decreases (Tables 12 and 13). In
the REMI naming simulations the target had 2, 7, or 15 near
neighbors. Tables 14 and 15 show the naming simulation results
collapsed across study conditions. The performance of the model
does indeed fall as the number of neighbors increases, because of
increased probability of responding with one of the neighbors.
Averaging over the conditions in their Experiment 9, they found
that the probability of a correct response was .333 for high-
frequency words, and .237 for low-frequency words (Table 12).
Collapsing across the corresponding simulation conditions from
Table 14, the probabilities of a correct response for high- and
low-frequency targets are .368 and .260, respectively. The reason
REMI predicts an advantage for high-frequency words is that they
tend to have more common -features, which increases the proba-
bility of a chance match.

Ratcliff and McKoon (1997) also asserted that their counter
model predicts greater priming effects for low-frequency words
than for high-frequency words. Collapsing across their Experi-
ments 6 and 9, they found that baseline performance for low- and
high-frequency words was .20 and .30. When the target was
studied, performance rose to .40 for low-frequency words and to
43 for high-frequency words. Another way to characterize these
results is to say that a single prior study removes the effects of

Table 8
Fits of the REMI Simulation to Ratcliff and McKoon’s
(1997) Experiment 6

Response
Study Target Similar Other
Target 0.387 0.012 0.082
Similar 0.280 0.037 0.118
Neither 0.283 0.017 0.114

Note. s35 = 23 and a = .85.

Table 9
REMI Simulation Results for Combinations of Near Neighbors,
Study, und Word Frequency

Response
Near Word

neighbors frequency Target Similar Other

Study nothing
2 Low 0.254 0.019 0.023
2 Normal 0.342 0.019 0.021
2 High 0.383 0.016 0.030
7 Low 0.232 0.014 0.106
7 Normal 0.283 0.023 0.099
7 High 0.347 0.022 0.113
15 Low 0.196 0.014 0.216
15 Normal 0.239 0.015 0.196
15 High 0.276 0.016 0.221

Study target
2 Low 0.357 0.013 0.008
2 Normal 0.428 0.010 0.016
2 High 0470 0.015 0.015
7 Low 0.333 0.014 0.081
7 Normal 0.417 0.011 0.072
7 High 0.441 0.012 0.078
15 Low 0.300 0.013 0.143
15 Normal 0.343 0.014 0.159
15 High 0.394 0.009 0.171

Study similar
2 Low 0.277 0.048 0.017
2 Normal 0.333 0.038 0.017
2 High 0.403 0.052 0.021
7 Low 0.219 0.034 0.085
7 Normal 0.304 0.036 0.104
7 High 0.328 0.031 0.104
15 Low 0.173 0.034 0214
15 Normal 0.209 0.025 0.256
15 High 0.270 0.035 0.248

frequency. The present version of REMI cannot fit this pattern of
results. Baseline performance for REMI for low- and high-
frequency words is .227 and .335, respectively. Prior study im-
proves performance by about .1 in both conditions to .330 and
435, respectively. In the section on forced choice, we noted that
REMI requires additional mechanisms to predict a perception
facilitation due to priming, and an advantage of high-frequency
pairs over low-frequency pairs. It is conceivable that such a mech-
anism could also produce a larger gain for priming of low-

Table 10

Probabilities of Responding With the Target in Naming
Averaged Over Study Conditions in Ratcliff and
McKoon's (1997) Experiment 9

Number of neighbors

Target
frequency 14 5-8 9 and over Marginal
Low 034 021 0.16 0.237
High 0.37 0.33 0.30 0.333
Marginal 0.355 027 0.23 —
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Table 11

Probabilities of Responding With Nontargets in Naming
Averaged Over Study Conditions in Ratcliff and
McKoon’s (1997) Experiment 9

Number of neighbors

Target
Response frequency 14 5-8 9 and over
Similar Low 0.06 0.02 0.02
Similar High 0.04 0.01 0.01
Other Low 0.077 0.071 0.146
Other High — — —

frequency than high-frequency words. We return to this issue
shortly.

The counter mode! handles word frequency effects by raising
the resting levels of the counters, such that high-frequency words
have a head start over their lower frequency counterparts. The
effects of prior study result from previously studied words having
an increased likelihood of stealing noise counts. It is not clear to us
why the counter model in its original form predicts that an increase
in the probability of stealing a noise feature should mitigate the
advantage that high-frequency words hold over low-frequency
words (however, McKoon & Ratcliff, in press, presented a revised
version of the counter model that probably would do so).

A Revised REMI Model of Forced Choice

A direct way to implement frequency effects in REMI is through
the prior. That is, the prior should reflect the observation that
high-frequency words are more likely to appear in the environment
than low-frequency words. In the mixed case, this would bias the
response toward the high-frequency alternative. However, in the
current version of the model, whenever the alternatives were of the
same frequency, the priors would cancel, so performance would be
the same for low-frequency and high-frequency pairs. A similar
argument holds for why our model does not predict performance
gains when both alternatives have been studied.

Although these results would be consistent with the analyses of
Ratcliff and McKoon (1997), they differ from more recent find-
ings. Masson and MacLeod (1996), in seven forced-choice per-
ceptual identification experiments, found that when both alterna-
tives had been previously studied, performance was on
average 1.8% better than when neither word had been studied,
though in only one of these experiments was this difference
statistically reliable. Raaijmakers, Schooler, and Shiffrin (1997),
using a forced-choice perceptual identification task, varied the

Table 12 _
Probabilities of REMI Simulation Responding With the Target in
Naming Averaged over Study Conditions

Number of neighbors

Target
frequency 14 5-8 9 and over Marginal
Low 0.296 0.261 0.223 0.260
High 0.419 0.372 0.313 0.368
Marginal 0.358 0.317 0.268

Table 13
Probabilities of REMI Simulation Responding With Nontarget in
Numing Averaged Over Study Conditions

Number of neighbors

Target
Response frequency 2 7 15
Similar Low 0.026 0.020 0.020
Similar High 0.028 0.022 0.020
Other Low 0.016 0.091 0.191
Other High 0.022 0.098 0.213

number of times in the experiment that test pairs were presented.
Participants performed 3.9% better when tested with pairs that had
five prior presentations than when tested with novel pairs. This
difference was statistically significant. As discussed earlier, others
have found performance advantages tor high-frequency pairs com-
pared with low-frequency pairs. In particular, Wagenmakers et al.
(2000) provided excellent data for testing purposes. They system-
atically varied the frequency of the target and foil, and whether the
target, foil, neither, or both had been studied. The results are
presented in Table 14. The striking result is that accuracy is better
when both alternatives are high-frequency words, and that prior
study of both words leads to improved performance for low-
frequency words.

We investigated a number of ways to augment the REMI model
to predict these findings, and discovered a number of different
models that appear capable of doing so, albeit at the cost of
additional assumptions, processes, and parameters. By way of
example, we provide one such model in this section but emphasize
that it would be premature to commit to any one version at this
time.

The approach we present incorporates a decision criterion into
the REMI forced-choice model (bringing it more in line with
models of word naming and yes-no performance). The revised
forced-choice model has two plausible assumptions. The first is
that there is a higher prior probability of encountering high-
frequency words than low-frequency words. This is implemented
in terms of high-frequency words sometimes receiving an extra
context match (with probability ay,). The second assumption is that

Table 14

Proportion of Correctly Identified Targets as a Function of
Word Frequency of Target and Foil and Study Condition
Jrom Wagenmakers, Zeelenberg, and Raaijmakers (2000)

Study
Target Foil Target Foil Neither Both
HF LF 0.87 0.773 0.868 0.842
LF HF 0.842 0.683 0.757 0.793
HF HF 0.862 0.753 0.816 0.822
LF LF 0.874 0.72 0.765 0.821

Note. HF = high frequency word; LF = low frequency word. Adapted
from Table 1 in “Testing the Counter Model for Perceptual Identification:
Effects of Repetition Priming and Word Frequency,” by E. M. Wagen-
makers, R. Zeelenberg, and J. G. W. Raaijmakers, 2000, Psychonomic
Bulletin & Review, 7, p. 664. Copyright 2000 by the Psychonomic Society.
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Table 15
REMI Fit of Wagenmakers, Zeelenberg, and Raaijmakers (2000}
Study

Target Foil Target Foil Neither Both
HF LF 0.903 0.797 0.845 0.867
LF HF 0.821 0.663 0.740 0.758
HE HE 0.874 0.740 0.806 0.822
LF LF 0.858 0.728 0.786 0.813

Note. HF = high frequency word; LF = low frequency word.

response is chosen when one of the alternatives matches more
features than the other, and it has at least a criterion number of
matches, Cpe; otherwise, the mode] guesses. The addition of the
response criterion means that the nondiagnostic features also play
a role. Previously, responses were based only on the number of
diagnostic matches.

These changes allow the model to capture the qualitative pattern
of results in the Wagenmakers et al. (in press) data: More than a
criterion number of matches is needed to avoid guessing. Non-
studied high-frequency words will exceed this criterion more than
nonstudied low-frequency words because of the extra matching
feature for high-frequency words. Prior study of both might tend to
push both high and low frequency words above criterion, reducing
the frequency advantage.

We applied this forced-choice model with criterion to the
Wagenmakers et al. (2000) data. Because these fits are for illus-
trative purposes only, they were not constrained by the previous
fits. For simplicity we assumed a uniform distribution of four
features, a probability « that a previously studied word will get an
extra match and a probability ay, that a high-frequency word will
get an extra match. The parameter values are in Table 2 under the
FC revised column, and the resulting fits are presented in Table 15.
The revised model fails to predict the magnitude of all of the
effects, but does predict the qualitative pattern correctly. In par-
ticular, the model shows an improvement in performance with
practice and word frequency. It should be noted that the model
predicts improvement with study for both high-frequency (1.6%)
and low-frequency (2.7%) words, but in the data the corresponding
gains are 0.6% and 5.6%. This prediction could be put more in line
with the data if the reasonable assumption were made that for
high-frequency words the extra context features due to study and
frequency were correlated. That is, the extra context feature that
matches current context for a high-frequency item is presumably
due to that word’s recent occurrence in the environment, possibly
causing storage of the same context feature that is stored in
conjunction with a recent study episode in the experiment.

In this revised model, it is difficult to know whether to attribute
REMT’s predicted performance gains for high-frequency pairs and
studied pairs to bias or improved perception. The answer might
hinge on research that establishes what factors cause or enable
adjustment of the criterion, Cr. If this criterion can be adjusted by
instructions and other factors, then it would be tempting to con-
clude that perception is not being affected. This interpretation
would be consistent with the fact that the parameter s has been held
constant for high-frequency, low-frequency, studied, and unstud-
ied words, and with the fact that in the revised model what varies

between high-frequency and low-frequency and studied and un-
studied words is a and oy, which in the previous applications was
responsible for bias due to prior study. However, if the criterion is
a relatively fixed part of the perceptual system, and cannot be
altered, then the interaction of such a threshold with experimental
manipulations like study could be viewed as a form of perceptual
change. More generally, we agree with the following assessment:

Hintzman (1990) has pointed out that these kinds of labels and
distinctions become irrelevant once a model has been spelled out; then
“the explanatory burden is carried by the nature of the proposed
mechanisms and their interactions, not by what they are called” (p.
121). (Ratcliff & McKoon, 1997, p. 341)

Comparison With ACT-R

Our Bayesian justification for the present model is similar to the
rationale underlying ACT-R (e.g., Anderson et al., 1998; Ander-
son & Lebiere, 1998). ACT-R models procedural knowledge with
sets of production rules (i.e., if-then rules) whose conditions (the
if part) are matched against the contents of declarative memory.
The fundamental declarative representation in ACT-R is the
chunk, which is something like a proposition. Central to ACT-R is
the idea that chunks take on activations. A chunk’s activation is a
combination of the underlying strength of the chunk, like p(w) in
Equation 1, and the activation it receives from associated active
chunks. In ACT-R, activation quite explicitly represents the pos-
terior probability (log-odds) that a particular chunk will fulfill a
processing goal of the system. Its strength represents the prior
probability that the chunk will meet a processing goal, before
taking into account associations that the chunk might have with the
current context.

By combining the ACT-R models of word-fragment completion
and the word-superiority effect (e.g., McClelland & Rumelhart,
1981; Reicher, 1969; Wheeler, 1970), it seems likely that an
ACT-R model of primed word identification could be constructed
that could handle Ratcliff and McKoon’s (1997) data. Implicit
memory effects in stem completion are observed when prior study
of a target word (e.g., class) increases the probability that a
word-stem (e.g., CL ) will be completed with the studied
word as compared with a baseline condition in which the target
had not been studied. In ACT-R, reading the word class strength-
ens the class chunk, so that when the participant is later presented
with CL , residual activation increases the chance of re-
sponding with “class.” The ACT-R model of stem completion
essentially implements similar proposals put forward by Bower
(1996) and by Reder and Gordon (1996).

ACT-R also has a well-worked-out model of visual perception
(Anderson & Lebierre, 1998; Anderson & Matessa, 1992) that can
handle the word superiority effect. The ACT-R model of visual
perception allows for chance matches that result from “seeing”
features that are absent in the stimulus. Such chance matches are
critical to our accounts of Ratcliff and McKoon’s (1997) data, and
the ACT-R account of the word superiority effect. Potential inter-
actions between residual chunk strength and ACT-R’s model of
visual perception means that it should be able to handle implicit
memory effects in perceptual identification. It remains to be seen
whether these pieces can be put together to handle Ratcliff and
McKoon’s (1997) results in detail.



THEORETICAL NOTES 269

This leads to the general questioxi concerning what classes of
models can handle the effects under discussion in this article. A
successful model generally requires both a valid conceptual basis
and an appropriate quantitative implementation. Fulfilling the sec-
ond of these requirements under any circumstances is often far
more difficult than external observers appreciate, and the rich set
of data collected by Ratcliff and McKoon (1997) is likely to make
attainment more difficult. At a more conceptual level, we have
demonstrated with the REMI model that two basic and rather
simple assumptions can enable the model to succeed (at least when
implemented within an appropriate quantitative system): (a) Study
makes the representation used for perception slightly more avail-
able, and (b) the system includes a rudimentary model of percep-
tion that includes some noise. It might be possible to incorporate
these assumptions into other types of models and thereby adapt
them to handle the present data. For example, TODAM2 (Mur-
dock, 1993), and MINERVA 2 (Hintzman, 1986) are feature-based
models that have been applied to explicit memory tasks. During
retrieval, a noisy vector of features is retrieved, and for recall this
vector must be de-blurred. Although these models are not entirely
explicit concerning the process of de-blurring, one method
matches the noisy vector to a lexicon of stored entries, searching
for a good or best match. Such a process might be adaptable to
threshold perception, in which a noisy set of input features must be
matched to a lexicon. If study makes the entries in the lexicon
slightly more accessible, the inherent noise in these models would
seem to make them meet the minimal requirements for handling
priming; however, making such models quantitatively adequate is
another matter entirely. The details of a given implementation
would determine whether it could predict the observed quantitative
relations among performance for studied and unstudied words,
similar and dissimilar words, yes—no and forced-choice tasks, and
so on. Whether the two basic assumptions are required for any
model applied successfully to the Ratcliff and McKoon (1997)
data is an open question. At first glance it appears that Ratcliff and
McKoon (1997) succeeded without invoking the assumption that
study makes the lexical trace more available. However, they as-
sumed that study changes the assignment of noise counts in favor
of a studied alternative but did not propose a mechanism by which
this occurs; if a mechanism were invoked, it might well be com-
patible with the assumption that study makes the lexical trace more
available.

General Discussion

Within the REM framework, explicit and implicit memory ef-
fects depend on similar storage and retrieval processes. Successful
retrieval relies on matching the contextual and content features of
the probe against the images required to make a response. In
explicit tasks, retrieval is defined contextually, so the context cues
play a large role. In implicit tasks, especially those in which the
participant believes access to general knowledge is all that is
needed to accomplish the stated goals, context cues play a lesser
and indirect role: We propose that the memory probe always
contains at least some current context because such context is
omnipresent in the participant’s external and internal environment.
We propose also that lexical-semantic images gain some current
context features when any item is studied, for similar reasons.
These two factors combine to produce many implicit memory
effects.

REM’s account of retrieval has roots in Bayesian statistics:
Shiffrin and Steyvers (1997) developed their recognition model
by assuming a near-optimal probabilistic decision acting in an
environment with a variety of constraints imposed by imperfect
storage and noise; the present account also assumes that deci-
sions are near-optimal given the constraints imposed by mem-
ory storage and perception. Given this approach, one can think
of the effects of context in implicit memory as a reasonable
attempt to incorporate prior odds into perception, retrieval, and
decision making. Because context changes over time, the addi-
tion of contextual information to lexical-semantic images, and
the use of context information in retrieval probes, can be seen
as an appropriate adaptation to the environment. This is not to
say that participants are oblivious to experiment-defined con-
straints; these also should be reflected in the priors. However,
the two sorts of contributions to the priors ought in most cases
to be distinguishable. For example, one response to an
experimenter-imposed constraint might be an adjustment late in
processing of the response criterion. '

In our basic model, in the initial version of the counter model
(Ratcliff & McKoon, 1997), and in the conclusions of Masson
and MacLeod (1996), the quality of perceptual processing is
unaffected by prior study. More recent data (e.g., Wagenmakers
et al.,, 2000) has shown that priming both alternatives in a
forced-choice task can produce a small performance increase
relative to priming neither alternative. This result is most sim-
ply explained as being due to a perceptual gain in processing the
flash. However, the revised model we discussed, which contains
a response threshold, is able to explain such a result and could
easily be interpreted to imply no change in quality of perceptual
processing. This issue notwithstanding, any claim that percep-
tual processing is unaffected by prior study must be task de-
pendent. When a word is presented once, one more study
instance is added to a lifetime of such events, perhaps total-
ing 10,000. Even allowing for the adaptive role of recency (and
its implementation in context storage and retrieval), it is easy to
see why changes in the lexical-semantic representation due to
study, and changes in subsequent retrieval due to that change,
are small in magnitude. However, the study of a novel event,
such as a nonword, may add a representation to a memory that
contains no previous exemplars. In this case, it would be much
less surprising to find clear demonstrations of perceptual pro-
cessing gains, perhaps gains due to top-down facilitation of
lower level processing. Just one of many examples would be the
word-superiority effect (e.g., McClelland & Rumelhart, 1981;
Reicher, 1969; Wheeler, 1970; see also Feustel, Shiffrin, &
Salasoo, 1983; and Salasoo, Shiffrin, & Feustel, 1985).

Finally, a few words are in order concerning the relation be-
tween our model and the counter model of Ratcliff and McKoon
(1997). The counter model predicts no effect for sufficiently dis-
similar alternatives, whereas our model predicts a small effect for
dissimilar alternatives. Whether real data would produce suffi-
ciently powerful results to distinguish the models on this basis is
an open question. Applied to the present tasks, both models as-
sume no effect of prior study on the quality of initial perceptual
processing. Both assume an important role for noise in producing
the interaction of prior study and similarity: As a function of
similarity, the counter model differentially reallocates the assign-
ment of noise features, whereas our model includes a differential
number of noise features in the decision process. It is not imme-
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diately obvious to us how to carry out an empirical test based on
this distinction, but the models are conceptually quite ditferent, so
continued development of both models may eventually lead to
empirical tests.

The results of our modeling efforts support the view that in
REMI, context acts as a prior. The influence of a prior weakens as
more diagnostic evidence is gathered. Likewise, for REMI the
influence of context (and prior study) weakens as more veridical
diagnostic features are made available by either increasing the
flash duration or increasing the dissimilarity of the alternatives.
These are characteristics that, Ratcliff and McKoon (1997) argued,
a model of implicit memory must display. Thus, a model of
perceptual identification built along Bayesian principles exhibits
the properties we sought and demonstrates that Ratcliff and Mc-
Koon’s (1997) data can be handled by a model in which “prior
exposure to a word changes some property of the representation of
the word” (Ratcliff & McKoon, 1997, p. 339). In building this
model, we have maintained the viability of REMI and other
models (Anderson & Lebierre, 1998; Bower, 1996; Reder &
Gordon, 1996) that depend on strengthening memories to account
for implicit memory effects.
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Appendix A

Forced Choice

Let the g appropriate for the target be denoted g, and the g appropriate
for the foil be denoted g;. Let the g used to fill in the values of the perceived
vector be denoted g; let subscripts /, j, and k refer to the feature values that
each of these might attain. Let t refer to the target choice vector, f to the
foil choice vector, and d to the perceived vector. For any given diagnostic
feature in these vectors (i.e., for which i and j are not equal), the following
equation gives the distribution of the feature values that might cccur:

Pu=Pit=if=jd=ki=#})

ifi=k
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In Equation A1, the term P(i # j) is calculated by summing the terms in
the numerators of the expressions for which i and j are not equal. Let P,,
Py, and P, refer to the probabilities that a given diagnostic feature might
match the target, the foil, or neither, respectively:

- {gngfj[s + {1 — 9)gl/P(i # j)
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Let N be the sum of nl, n2, and n3, where these refer respectively to the
number of diagnostic features that match target, foil, and neither. Then:

N

al paZ pn3,
nl, n2, n3 )PrPan’

P(nl, n2, n3) = <
Plrl=n2+1)= Z P(nl, n2, n3);
nl=r2+1

Plnl=n2-1)= > Pnl, n2, n3);

nl=n2-1
P(C) = P(nl > n2) + .5P(nl = n2), if neither studied;
PAC) = Py(C) + .5a[P(n] = n2) + P(nl = n2 — 1)],
if target studied; and
Pr(C) = Py(C) ~ 5a[P(nl = n2) + P(nl =n2 + 1)],

if foil studied.

Appendix B

Yes—No

Let Py;_ equal the probability of a match between d and the test word
when the target and test words match in that feature position. Let Py,
equal the probability of a match in a feature position when the target and
test words mismatch in that feature position. Let g,; and g,; be the respec-
tive probabilities that the target and the test word have a feature with value
i in a given position (depending on the experimental design, either of these
could be the basis for the feature values obtained when the target and foil
test word match in a given position; usually similar foils are matched to
targets, so g,; is used in the expressions below). Let g; be the probability
that the value in the perceived vector has value i if stored there by noise.
Then:

Py-=s5+ (1 —3s) z 88 Puma=(1—35) 2 88

i=1 i=1

Let P; = probability that i matches occur for the M feature positions in
which the target and choice word match, and j matches occur for the M*
feature positions in which the target word and choice word mismatch.

M\ I MF .
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Let C be the criterion number of matches for responding yes:

P(yes) = >, P, (B

i+j>C

The numbers M and M* (M + M* = L) are parameters determined by
the experimental condition. For target tests, M = L. For similar foils, M*
= L. For dissimilar foils, M* = L, The features common to all words
(L — L, in number) could in principle have a g value different from the
other g values, but we have for convenience set it to the common default
value for noise (denoted g above). If the test item had been studied, then the
probability of responding ves is ‘

P(*yes”) =(1—a) X, Py+a > P, (B2)

i+j>C i+j>C~1

where « is the probability of an extra context match due to prior study.
These equations were verified by simulations.

(Appendixes continue)
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Appendix C

Estimating Orthographic Similarity

To assess the validity of using Zipf’s law, we examined the orthographic
similarity of printed words to each other. Restricting our analysis to
four-letter words with frequencies of at least one in a million in Kucera and
Francis (1967), because Ratcliff and McKoon (1997) culled their words
from this corpus, we calculated a rough measure of visual similarity for
each pair of words. Consistent with Ratcliff and McKoon’s (1997) descrip-
tion of orthographic similarity, letters were coded according to whether

‘ they have ascenders (e.g., [, d, h), descenders (e.g., j, y, g), or neither (e.g.,
i, n, 5). A measure of word dissimilarity was constructed by matching
corresponding letters. Differently shaped, same shaped, and identical let-
ters added respectively S, 2, and O units fo the measure. For example, the
distance between lied and died on this scale would be 2 and the distance
between lied and sofa would be 17. For each of the 1,500 words that met
the inclusion restrictions, the similarity distances of the other words were
calculated and were ranked from most similar to least similar. The average
similarity distance was calculated for the most similar word (e, the
nearest neighbor), the second most similar (the second nearest neighbor),
and so on. Figure C1 (Panel A) plots these similarity distances as a function
of rank, and Figure C1 (Panel B) plots the results in log~log coordinates.
The straight line observed in Figure C1 (Panel B) (> = .99) supports the
assumption that Zipf’s law approximates the distribution of similarities
between words, with the values of r and b estimated to be 2.5 and .253,
respectively.
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Figure C1. A measure of visual similarity was constructed for four-letter
words (lower values indicating greater similarity). All the neighbors of a
word are ranked from 1 (most similar) to 20 (least similar) on this measure.
Panel A gives the average across all words of the visual similarity of a
word’s first-ranked neighbor, second-ranked neighbor, etc. Panel B shows
the data from Panel A in log—log coordinates. The straight line in this scale
indicates that Zipf’s law approximates the distribution of a word’s neigh-
bors in terms of their similarity.
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