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Statistical Analysis of the Michaelis—-Menten Equation

Jeroen G. W. Raaijmakers
TNO Institute for Perception, Kampweg 5, 3769 DE Soesterberg, The Netherlands

SUMMARY

An application of the method of maximum likelihood (ML) is described for analysing the results of
enzyme kinetic experiments in which the Michaelis-Menten equation is obeyed. Accurate approxi-
mate solutions to the ML equations for the parameter estimates are presented for the case in which
the experimental errors are of constant relative magnitude. Formulae are derived that approximate
the standard errors of these estimates. The estimators are shown to be asymptotically unbiased and
the standard errors observed in simulated data rapidly approach the theoretical lower bound as the
sample size increases. The results of a large-scale Monte Carlo simulation study indicate that for data
with a constant coefficient of variation, the present method is superior to other published methods,
including the conventional transformations to linearity and the nonparametric technique proposed
by Eisenthal and Cornish-Bowden (1974, Biochemical Journal 139, 715-720). Finally, the present
results are extended to the analysis of simple receptor binding experiments using the general approach
described by Munson and Rodbard (1980, Analytical Biochemistry 107, 220-239).

1. Introduction

In many biochemical and pharmacological experiments the data are assumed to conform
to a two-parameter rectangular hyperbola, i.e.,

S
(s +8)

where v is the dependent variable, s the independent variable, and « and 8 are parameters
or constants. The aim of the experiment is to determine the value of these constants. For
example, in enzyme Kkinetic studies, v refers to the velocity of an enzyme reaction and s
refers to the substrate concentration. In this case one wishes to estimate o = V or Vpax, the
maximal velocity, and 8 = K,,, the Michaelis constant. In this context, equation (1) is
known as the Michaelis-Menten equation. Similarly, in receptor binding studies, the
dependent variable is the amount of ligand bound (usually denoted by B), which is a
function of the free concentration F of that ligand. In this case, o corresponds t0 Bpax, the
maximal binding capacity, and 8 to K, the dissociation constant. One important difference
between the latter case and the application in enzyme kinetics studies is that in binding
studies the experimentally controlled variable is not s, but T = s + v, the total ligand
concentration. Hence, any method for the analysis of the Michaelis-Menten equation will
require some changes in order to adapt it to this procedural difference. In this article, we
will focus on the application to enzyme kinetic studies. The adaptation to binding studies
will be discussed in a separate section.

Several methods have been proposed for the estimation of the parameters « and g.
Most of these are based on transformations of equation (1) to a linear plot of the form

)
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Receptor binding.

793



794 Biometrics, December 1987

Y=a+ bX, eg.,

1:_1_’_(5/0!), @)

v s

s_B.s

'v-_a+a’ 3)
v a v

Pt 4
_, B

v=a-="". (5)

Estimates for the parameters are then obtained from the slope and intercept, which are
estimated by applying ordinary linear regression techniques. The oldest and still most
widely used procedure is based on equation (2), which is known as the Lineweaver-Burk
plot. Based on a comparison of the number of citations, Glick, Landman, and Roufogalis
(1979) conclude that this analysis procedure still appears to be widely used by enzyme
researchers, despite the fact that the simulation analyses by Dowd and Riggs (1965) and
Colquhoun (1969) showed that this procedure is by far the worst of all proposed estimation
methods. Better results may be obtained using equation (3) (the so-called Woolf transfor-
mation) which is, however, seldom used in practice.

Equations (4) and (5) are based on the same transformation of the data. Both are based
on the fact that the Michaelis-Menten equation predicts a linear relationship between v
and v/s. The difference between the two methods is that in equation (4), v/s is considered
as.a function of v, while in equation (5), v is assumed to be a function of v/s. Hence,
the difference between these two methods is a result of the fact that the slope of the
regression line of Y on X (b,.) is generally not equal to 1/b,,, where by, is the slope of
the regression line of X on Y. The analysis based on equation (4) is frequently used by
pharmacologists in receptor binding studies and is known as a Scatchard analysis (the
corresponding plot of B/F vs B is called a Scatchard plot) after Scatchard (1949), who
introduced this estimation method. The alternative procedure based on equation (5) was
introduced by Eadie and Hofstee (see Zivin and Waud, 1982).

Since each of these procedures gives different estimates for the parameters o and 8
(except in the case of errorless data), the obvious question is which of these methods, if
any, is correct. Many analyses have been made to answer this question. It should be noted
that the answer depends crucially on the assumptions one wishes to make concerning the
error variance. That is, the analysis of the statistical model corresponding to the mathe-
matical equation (1), '

os
v =

—s+ﬂ+e, (6)

should depend on the distribution that one assumes for «.

It can be easily shown that each of the so-called linear methods described above implicitly
introduces transformations of ¢ that invalidate the conventional regression analysis. A
number of researchers (e.g., Dowd and Riggs, 1965; Colquhoun, 1969; Atkins and Nimmo,
1975) have examined the extent of the bias and the variance of the parameter estimates
that are obtained with these linear methods. Other techniques have been developed that do
not involve a transformation of the data (e.g., Eisenthal and Cornish-Bowden, 1974;
Wilkinson, 1961). Cornish-Bowden and Eisenthal (1974) and Atkins and Nimmo (1975)
have compared these and other methods for fitting the Michaelis-Menten equation. None
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of the methods seems to be uniformly superior, and the extent of the bias with these
methods depends on the exact nature of the error and the design of the experiment (i.e.,
which values:of s have been employed; see Currie, 1982).

In this paper, I will present a new solution to this problem that is based on the method
of maximum likelihood. It will be shown that this method leads to simple, analytic formulae
for the parameter estimates. Moreover, it enables us to derive large-sample equations for
the standard errors.

2. The Maximum Likelihood Solution

As mentioned earlier, the optimal solution to the estimation problem depends on the
distribution assumed for the error component. The method of maximum likelihood (ML)
has been used previously to fit a rectangular hyperbola, but only under the assumption of
a constant absolute error. In that case, the solution is equivalent to that of the direct least
squares method (see Wilkinson, 1961) and may be obtained with any of the several
programs that are on the market. These programs make use of an iterative procedure.
However, the assumption of a constant absolute error does not seem to be appropriate for
most applications. According to Zivin and Waud (1982), the standard deviation of the
dependent variable (v) is usually roughly proportional to the mean value, i.e., it has a
constant coefficient of variation. This assumption leads to the following statistical model:

asj . Si
V) =

= iy .=la"'a t 7
s+B s+p™ ! " o

where ¢; is assumed to be normally distributed with mean 0 and variance ¢2.

Although the traditional methods do not take the particular error structure into account,
a number of authors have developed methods and/or computer programs that do allow
the specification of a variety of assumptions on the error structure. Many of these
approaches use a weighted least squares approach. It can be shown by simple algebraic
manipulation that under the present assumption with respect to the errors, a weighted least
squares approach in the original coordinate system leads to a solution that is equivalent to
the analysis based on equation (5), the Eadie-Hofstee plot.

Let S5 be the weighted least squares function that is to be minimized:

_ o [vi — asi/(si + B)]?
55 = zl o?si/(si + AP

This is equivalent to

SS = zn: (vi + ﬁvi/zsi - 01)2_

i=1 o

Apart from the irrelevant constant o2, this is equal to the sums-of-squares function that is
minimized when the parameters are estimated using equation (5). This equivalence is not
surprising since the transformation has in this case a variance-equalizing effect (see Zivin
and Waud, 1982). Hence, the performance of such a weighted least squares approach as
compared to the present ML solution may be evaluated by using equation (5) as a substitute.

In order to derive the ML estimators, we have to differentiate the likelihood function,
L(X| e, B, ¢?), the likelihood of the data as a function of the true parameter values. In this
case, the likelihood is equal to

n [VZWG’Z S,]_I exp{—[l)i - OlSi/(si + ﬂ)]z}

ey 2670s/(s; + B)F
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As is usual, it turns out to be easier to maximize In(L) instead of L itself. Since In(X) is a
monotonic function of X, In(L) attains its maximum value for the same values of «, 8, and
o? as the likelihood function itself. After some algebraic simplification, the following result
is obtained:

= Qs (-5 § e

i=1 i=1

The maximum likelihood solution is obtained by setting the derivatives of In(L) with
respect to the parameters equal to 0. It turns out that the equations for these estimators
may be simplified by substituting X; = v,/s; and Y; = v, i.e., the ML estimators may be
written in terms of the variables mvolved in a Scatchard or Eadle—Hofstee plot. Denotmg
the ML estimators by &, 8, and & 62, we arrive at the following result

=Y +BX, ®
&2 — S.V.V + zﬁASx,v + BZSXX , (9)
n
Sy + BSu = (S, + 268, + £2Swx) 2. )—(—/ﬁf—@—), (10)

where S,,, Si, and S, are the sums of squares and cross-products of the deviations
Y; — Y and X; — X. From equation (10), 8 may be obtained using an algorithm for the
solution of a nonlinear equation.

Equation (10) may be simplified further by the following approximation:

1 5: X X
n] S Yi+ X, Y+ X
That is, we equate the mean of the ratios to the corresponding ratio of means. This
approximation is quite accurate, as will be documented in the next section. This simplifi-
cation leads to the following estimator for 8:
A X—'Syy - YSxy
b=¥s. —xs, (102)
& and 42 may be obtained by substituting the value of 8 given by equation (10a) into
equations (8) and (9). As in the conventional linear regression model, an unbiased estimator
for ¢ is given by

2= Sy + 2BSyy + B2Ssx
n—2

One of the advantages of the ML method is that it may be used to derive a large-sample
approximation to the variance-covariance matrix of the parameter estimates (Kendall and
Stuart, 1967), assuming the values of s; are drawn from a fixed distribution, independent
of the sample size. These variances are equal to the Cramér-Rao lower bound and may be
calculated from the second derivatives of In(L). Let D be the matrix whose elements are
equal to

2

9

where 6; and 6, are two arbitrary parameters, i.e., —D contains the expected values of the
second partial derivatives of the log-likelihood function with respect to the parameters. The
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variance-covariance matrix = of the parameter estimates is given by the inverse D! of D.
This leads to the following large-sample formula for the variance of 3:

02

[(1 + 26%/a?) Y, (Ui — U)]’

where U is defined as U; = a/(s; + B), i.e., the true score corresponding to v;/s;. Similarly,
the large-sample variance of & and the covariance of & and g are given by

var(B) = (an

2

var(a) = % + O%var(B), cov(é, B) = T var(B). (12)

Sample estimates for these variances and covariance are obtained by substituting the
estimates for a, 8, and o2 (corrected for bias) into the above equations. These estimates
may be used to compute confidence intervals for a and 8, since, for example, 8 will be
approximately normally distributed with mean 8 and variance var(3). In the next section,
we will present the results of a Monte Carlo investigation designed to evaluate the adequacy
of this method in comparison to other published analyses of the Michaelis-Menten
equation. We will also investigate whether the variances of the estimates indeed attain the
Cramér-Rao lower bound, and if so, how fast.

3. Monte Carlo Evaluation

A number of data sets were simulated by generating values of v; using equation (7).
Normally distributed values of ¢; were obtained using the method described in Box and
Muller (1958). Seven different sample sizes were used—namely, n = 5, 10, 20, 50, 100,
200, and 500. The large sample sizes were included to evaluate the correctness of the large-
sample approximations to the parameter variances. In each case, only five different values
of s were used, however: s = 1, 4, 16, 64, and 256. For larger sample sizes these values were
used repeatedly (e.g., in the case n = 100, each s-value was used 20 times). In all simulations,
the true value of o was equal to 25 and 8 was equal to 10. The error variance o2 was either
small (¢ = 1.25) or relatively large (¢ = 6.295), i.e., the coefficient of variation (CV) was
either 5% or 25%. For each combination of sample size and error variance, 10,000 sets of
data were simulated, i.e., each reported mean and standard deviation is based on 10,000
values.

The basic results are presented in Table 1. This table includes for each simulation the
mean value of the estimates for o and 8 [using the approximation given in equation (10a)],
their observed standard deviations, and the predicted standard deviations based on equa-
tions (11) and (12). For each set of data, we also obtained the exact ML estimates for 3
based on equation (10) using Newton’s method of successive approximations (Abramowitz
and Stegun, 1968, Formula 3.9.5). For CV = 5%, the exact ML estimates were virtually
identical to the approximate estimates: the mean absolute deviation for the different sample
sizes varied between .000009 and .000053 and the correlation between the exact and
approximate solutions was always 1.0 (up to six decimal places). For the larger error
variance (CV = 25%), the mean absolute deviation varied between .005 and .041 and the
correlation was always .9994 or larger. Hence, even in that case the approximation was
quite accurate, especially in comparison to the standard errors of the estimates. More
important, the mean values and the standard deviations of the exact estimates were virtually
identical to those given in Table 1. Hence, the simple solution given by equation (10a) may
be used in practice as a substitute for the exact ML solution.

It is evident that the results are quite good. The bias in the parameter estimates is quite
low and the predicted standard deviations correspond reasonably well to the observed
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Table 1 .
Mean bias and standard deviations of the parameter estimates as a function
of sample size and error variance

CV=5% CV =25%
n Bias s.d. Bias s.d.
. Parameter o
5 014 910 (.920) 384 4.571 (4.444)
10 .010 .655 (.651) .140 3.208 (3.143)
20 .008 460 (.460) 122 2.242 (2.222)
50 .001 290 (.291) .024 1.410 (1.405)
100 .000 207 (.206) .026 1.007 (.994)
200 .003 .145 (.146) .005 .699 (.703)
500 .000 .092 (.092) .007 449 (.444)
Parameter 8
5 022 671 (.671) 619 3.647 (3.169)
10 .009 477 (.474) 262 2.382 (2.241)
20 .009 336 (.335) 150 1.641 (1.585)
50 004 211 (.212) .041 1.001 (1.002)
100 .001 .149 (.150) .030 719 (.709)
200 .001 .106 (.106) 014 494 (.501)
500 .000 067 (.067) .007 321 (.317)

Note: The values in parentheses are the predicted standard deviations according
to the large-sample approximation.

values, even when the sample size is as small as n = 5. Of particular interest is the fact that,
as sample size increases, the bias becomes vanishingly small and the standard deviation
attains the theoretical lower bound. This is shown more clearly in Table 2, where the
observed values of Jﬁo@ are given. The predicted values of this quantity depend only on
the size of the error and not on the sample size, n. For large sample sizes the fit to the
theoretical normal distribution is very good (see Figure 1). For n = 500, the observed
distributions of 8 do not differ significantly from the expected distribution. This was tested
using the Kolmogorov test statistic Dy,ax, Which measures the maximum deviation of the
observed from the expected distribution (Conover, 1971). For ¢ = 1.25, Dpax Was equal to
.0112 (P> .10) and for o = 6.25, Dmax Was equal to .0086 (P > .20). For the smaller error
variance (CV = 5%) the fit to the normal distribution was alteady quite good for a sample
size as small as n = 5 (see Figure 2).

Table 2
Normalized index of adequacy of large-sample
approximation to standard error as a function of
sample size and error variance

n CV=5% CV=25%
5 . 1.50 8.16
10 1.51 7.53
20 1.50 7.34
50 1.49 7.08
100 1.49 7.19
200 1.50 6.99
500 1.50 . 7.18
Theoretical
value 1.50 7.09

Note: Values given are equal to vno;.
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Figure 1. Observed and predicted distribution of 3 for large sample sizes. Continuous lines corre-
spond to the normal distribution predicted on the basis of the large-sample approximation.
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Figure 2. Observed and predicted distribution of 3 for small sample sizes. Continuous lines
correspond to the normal distribution predicted on the basis of the large-sample approximation.

How does the present method compare with other published methods of analysis?
Colquhoun (1969) compared the efficiency of the three linearity transformations corre-
sponding to equations (2), (3), and (5) to that of a direct least squares method (Wilkinson,
1961). In case of a constant relative error (which is assumed in our method), the best results
were obtained with the analysis based on equation (5). As had been previously observed by
Dowd and Riggs (1965), the most common method of analysis, based on the Lineweaver—
Burk plot [equation (2)], performed quite badly. We will therefore compare our method
with respect to the estimation of 3 with the analysis based on equations (4) (which was not
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included in the Colquhoun study) and (5). As mentioned earlier, the latter analysis is
equivalent to a weighted least squares method (in the original coordinate system). Since
the estimates of 8 and « are highly correlated, similar results hold for the estimation of «.
An additional reason for making this particular comparison is that these methods are based
on the same variables, v and v/s, that are used in the proposed maximum likelihood
method.

In our simulations we observed that the estimates for 8 based on equation (4) (the
Scatchard plot) were severely biased as well as more variable than those obtained with the
present ML method. The standard deviation of the estimates for 3 obtained from the
analysis based on equation (5) (the Eadie-Hofstee plot) was slightly smaller than that of
the ML method. These estimates were, however, also severely biased, the net result being
a larger mean squared error (MSE, the mean of the squared deviations of the estimates
from their true values). Moreover, the bias in the estimates resulting from the two
transformations increased with increasing sample size, an additional sign of their theoretical
inadequacy. Table 3 gives for each condition the MSE for the ML method and these two
linearity transformations.

Table 3
Mean squared error for different methods of estimation of the parameter 8
ML ML

CV n method vvsv/s v/svsv | CV n method vvsv/s uv/svsv
5% 5 451 448 469 |25% 5 13.684 11.507 816.124
10 228 230 244 10 5.743 6.842  22.436

20 113 118 131 20 2.715 5.328 16.869

50 .045 .052 .062 50 1.004 4.750 13.541

100 .022 .031 .039 100 S18 4.586 12.887

200 011 021 .028 200 244 4.513 12.419

500 .004 .014 .021 500 .103 4.456 12.077

In case of n = 5, we also investigated the adequacy of the nonparametric technique
proposed by Eisenthal and Cornish-Bowden (1974). In this method, each pair of observa-
tions is used to solve for the parameters « and 3. The final estimates are equal to the
medians of these n(n — 1)/2 estimates. This method makes no assumptions about the
nature of the error. On the basis of their results, Atkins and Nimmo (1975) recommended
this method as the one to use. In case of the smaller error variance (CV = 5%), the estimates
produced by the Eisenthal and Cornish-Bowden method were slightly more biased and had
a larger standard deviation than those of the ML method. Hence, the mean squared error
was larger than that obtained with our method (MSE; = .524 for their method compared
to .451 for our method). For the larger error variance (CV = 25%), their estimates were
slightly less biased, but more variable than ours, the net result being a larger mean squared
error (MSE; = 14.816 vs 13.684).

Cornish-Bowden and Eisenthal (1978) proposed a modification of the original method
in order to eliminate certain bias problems that may arise in the final estimates if any pairs
lead to negative values for «. In this modification, one first calculates the medians of 1/«
and G/« instead of the medians of « and 8. The final estimates are obtained by applying
the inverse transformation to these medians. However, this modification did not lead to
better results than the original method. The bias was not affected much but the standard
deviation was even larger, especially in case of the larger error variance (MSE; = .581 and
23.117 for CV = 5% and 25%, respectively). Considering the fact that our method is much
simpler to use and leads to analytic expressions for the standard errors of the parameters,
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it should be concluded that the present ML method is to be favoured over the nonparametric
technique proposed by Eisenthal and Cornish-Bowden.

4. Application to Binding Studies

As mentioned in the introduction, the present method cannot be applied directly to binding
studies. The reason for this is that in such studies the experimentally controlled variable is
the total concentration 7' (= v + s). Hence, s can only be estimated from the observed data
and these estimates will contain errors. Our proposed method of analysis assumes, however,
that s is measured without (noticeable) error. From a statistical point of view the presence
of measurement error in the independent variable changes the situation quite radically [see,
e.g., the large statistical and econometric literature on the so-called errors-in-variables
model (Anderson, 1984)].

Munson and Rodbard (1980) have described a general procedure for the analysis of data
from ligand-binding experiments that utilizes total ligand concentration as the independent
variable. Their method uses a weighted least squares approach. It is possible, however, to
adapt their general procedure to the present ML approach. The total concentration T is
equal to

Ti = s5; + asi/(si + B). (13)

Given T; and starting values for o and 3, this equation may be solved for s;. (It reduces to
a quadratic equation whose positive root is s;.) These s;-values may then be used to generate
new estimates for o and 8 using equations (8) and (10a). The new values may then be
inserted again in equation (13) to get new estimated values for s;. This iterative process
continues until the values for « and @ stabilize. It should be noted that this procedure still
generates ML estimates for the parameters since the likelihood given «, 3, and T; equals
the likelihood given «, 8, and s;.

Given the superiority of the present ML method to the weighted least squares approach
in the enzyme kinetic model, we may conclude that it will also lead to better results in the
adaptation to binding studies.

5. Conclusions

We have shown that the application of the method of maximum likelihood to the estimation
of the parameters of the Michaelis-Menten equation leads to a simple analytical solution
for the parameter estimates for the case of errors with constant coefficient of variation.
Moreover, formulae were derived that approximate the observed standard errors of the
estimates reasonably well. It should be emphasized that the adequacy of the present method
hinges on the correctness of the assumed distribution of the errors. We do feel, however,
that the assumption of a constant relative error describes the observed error distributions
reasonably well. At least, the present assumption seems more appropriate than the principal
alternative that assumes an error of constant magnitude, independent of the mean. In case
one does have reason for assuming that the error is homoscedastic, the direct least squares
method proposed by Wilkinson (1961) should be used. This method corresponds in that
case to the maximum likelihood solution.

Application of the method of maximum likelihood has a number of advantages over
other methods of parameter estimation. First of all, the commonly used transformations
to linearity are dubious from a statistical point of view since they do not take into account
the effect of such a transformation on the error component. This leads to a relatively large
bias in the estimates, as was shown in the present study as well as in previous investigations.
Second, the ML method is firmly rooted in statistical theory and has a number of optimum
large-sample properties (see, e.g., Mood, Graybill, and Boes, 1974). Finally, the present



802 Biometrics, December 1987

method leads to simple formulae for the standard errors of the parameters, which is of
obvious importance in practical situations.

We have presented results from a simulation study designed to evaluate the adequacy of
the present method. It was observed that the results were quite favourable and superior to
those of the other major candidates. In particular, the mean squared error was smaller than
_ that of the nonparametric technique proposed by Eisenthal and Cornish-Bowden (1974),
which is generally regarded as one of the best of the available methods of analysis (Currie,
1982; Atkins and Nimmo, 1975). It should be noted that our results were obtained using a
specific set of parameter values and a specific experimental design (i.e., a particular set of
values for s). While it is not likely that the choice of parameter values matters much, it is
conceivable that the adequacy of the present method relative to other methods is dependent
on the experimental design (Currie, 1982). Although maximum likelihood theory guaran-
tees that the estimates will have optimum large-sample properties, this may not be true for
small samples. Notwithstanding these reservations, our data show that the present method
is at least preferable to the other methods in designs similar to the one employed in this
study. These results indicate that extension of the present method to more complex
situations (e.g., involving multiple-substrate reactions) promises to be a worthwhile effort.
However, such an extension has not yet been made.

RESUME

L’article décrit une application de la méthode du maximum de vraisemblance (ML) pour analyser
les résultats d’expériences de cinétique enzymatique obéissant a I’équation de Michaelis-Menten. Il
présente de bonnes solutions approchées des équations du ML pour estimer les paramétres dans le
cas ou les erreurs expérimentales ont une valeur relative constante. Il donne des formules approchées
des écarts-type des estimateurs. Il montre que ces estimateurs sont asymptotiquement sans biais et
que les écarts-type observés sur des données simulées approchent rapidement la borne inférieure
théorique quand la taille de I’échantillon augmente. Les résultats d’une étude de simulation de Monte-
Carlo importante, indiquent que pour les données ayant un coefficient de variation constant, la
présente méthode est supérieure aux autres déja publiées, y compris celles utilisant les transformations
pour linéariser, conventionnelles, et la technique non paramétrique proposée par Eisenthal et Cornish-
Bowden (1974, Biochemical Journal 139, 715-720). Enfin, les résultats sont étendus a I’analyse
d’expériences a un seul récepteur liant, utilisant I’approche générale décrite par Munson et Rodbard
(1980, Analytical Biochemistry 107, 220-239).
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