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Abstract

This article discusses a number of problems and confusions concerning the
proper use and interpretation of the analysis of covariance. It is argued that
in discussions of a technique for data analysis statistical and methodological
issues should be kept separate. It is shown that a number of socalled assump-
tions of ANCOVA that have been mentioned in the literature, are not in fact
necessary'from a statistical point of view. Part of the confusion concerning
the use of ANCOVA seems to be due to the fact that ANCOVA is often misinter-
preted as a kind of ANOVA on scores corrected.for their relation to the covar-
iate. The logic of ANCOVA gives no support for its use as a substitute for ex-
perimental control.

A detailed discussion is given of the effects of measurement error in the
covariate on the results of ANCOVA. We criticize the position taken by Overall
and Woodward (1977a, 1977b) who defended the use of ANCOVA in certain situ-
ations involving fallible covariates. It is shown that in such cases a conven-
tional ANCOVA nearly always leads to a biased test for the hypothesis of no
group differences. In addition, an extensive discussion is given of alterna-
tive approaches based on the formulation of ANCOVA as a functional or struc-
tural relationship model. It is shown how the standard null hypothesis might
be tested in such an approach. On the basis of simulation results it is con-
cluded that such a testing procedure is preferable to the conventional F-test

of the ANCOVA null hypothesis.
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Introduction

The analysis of covariance (ANCOVA) was developed as a means for increasing
the precision of statistical evaluation of experimental effects and as a meth-
od for removing bias due to differences between experimental groups. General-
ly speaking, there are two procedures for reducing the error variance and thus
increasing the power of the statistical test. First, there are a number of ex-
perimental designs that lead te a reduction in error variance (compared to a
simple randomized groups design) by direct contfol of relevant factors. The
most important of these, at least for the present discussion, is the random-
ized.block design. In this design the error variance is reduced by grouping
experimental units into blocks that are homogéﬁeous with respect to the conco-
mitant variable one wishes to control for. Second, one could try to control
statistically for the effects of the concomitant variable. In such a proce-
dure the effects of a concomitant variable are partialled out by assuming a
particular functiomal relationship between the concomitant variable and the
dependent variable. One of the most widely used procedures for achieving this
kiﬁd of statistical control is the analysis of covariance. The usual ANCOVA
model is based on the assumption of a linear relationship between the concomi-
tant variable or covariate and the dependent variable. 1If the relation be-
tween these variables happens to be nonlinear, stratification of experimental
units (i.e. a randomized block design) leads to a greater reduction in the ex-
perimental error than the linear adjustment used in ANCOVA. Stratification is
essentially a function-free regression scheme.

ANCOVA has also been proposed as a method to adjust for initial differences
between experimental groups. The need for such an adjustment is most prominent
in situations where the experimental units cannot be assigned at random to the
experimental conditions. This situation occurs frequently in quasi-experimen-

tal and observational type research (see Cook & Campbell, 1979). It should be
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clear that in such an application ANCOVA adjusts only for differences between
experimental groups that can be attributed to the particular concomitant vari-
able which is used in the experimental design. Firm conclusions may still be
difficult due to remaining pre-experimental differences.

The rationale underlying the ANCOVA procedure may be illustrated by the AN-
COVA-model for a single factor experiment. In this case one assumes that the

following model is appropriate for the dependent variable yjj

yij = u aj +'B(Xij-y) + sj(j)’ I=1,...,r; j=1,...,¢ (1)
where y is the overall mean, aj is the»effgg}\due to treatment condition j, B
is the parameter of the regression of y on x (the concomitant variable or co-
variate), and Ei(j) refers to the error component. For the moment we will as-
sume that the xjj's are fixed constants (i.e. no distribution is assumed for
x) and that the expectation of sj(j) is zero.

The usual F-test for the null hypothesis aj = 0 (all j) is based on a com-
parison of the variance explained by the linear model of Equation 1 with the

variance explained by the reduced model

yjj =u + B(xjj-?) + Ei(j)’ i=1,...,ry j=1,...c.

In order for the F-statistic that is used to test the null hypothesis to have
a variance ratio or F-distribution, the following assumptions have to be full-

filled.

1. the € are independent random variables each having a normal distri-

i(j)
bution with mean zero and variance 02.
2. as is implied by the model of Equation 1, all groups must have the same

regression'coefficient, i.e. 51 = 52 = .,.=f = 8.

In addition to these two assumptions, various other conditions have been men-

tioned in the literature as being necessary for a valid application of ANCOVA.
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For example Winer (1971, p.764) mentions the requirement that not only the
within-gronps regression coefficients should be equal, but that élso the com- .
mon within-groups regression coefficient should be equal to the between-groups
regression coefficient and to the total regression coefficient. According to
Evans and Anastasio (1968) a necessary condition for a valid application of
ANCOVA is that treatment effect and covariate are uncorrelated. This condition

implies that
taX, =0,
JJ

which in general implies that all covariate means are equal.

Yet another problem with the application of ANCOVA concerns the effect of
measurement error in the covariate. It is frequently mentioned that measure-
ment error in the covariate leads to a biased estimate for B and thus to an
incorrect estimate of the treatment effect. On the other hand, Overall and
Woodward (1977a) argue that ANCOVA leads to valid results in a number of cases
even if the covariate is fallible. In addition, Overall and Woodward (1977b)
~ suggest that measurement errbr in the covariate does not necessarily invali-
date the results of ANCOVA even in the case when subjects are non-randomly as-
signed to treatment conditions, provided the assignment is based on the ob-
served value of the covariate.

It is also frequently assumed that ANCOVA is equivalent to an ordinary
analysis of variance (ANOVA) on the residuals from the overall regression line
between the dependent variable and the covariate. For example, Kirk (1968,

p-469) rewrites the ANCOVA-model as

Vijcadsy = Tay " BT

s=pta,te,, .
Bey i(j)
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This could easily be (mis)interpreted as implying that ANCOVA is equivalent to
ANOVA on the adjusted scores. Some textbooks (e.g. Kerlinger & Pédhazur, 1973,
P. 267; Pedhazur, 1982, p. 497) in fact do give such an interpretation of
ANCOVA.

In this paper we will review a nuﬁber of these problems. First, we will
show that several misconceptions regarding ANCOVA are due to a confounding of
statistical and methodological issues related to the assumptions of ANCOVA. A
major purpose willybe to investigate the effects of measurement error in the
covariate on the validity of the results of ANCOVA. We will not only consider
the effects on the estimation of the parameters of the ANCOVA-model (a, B),
but we will alsc consider the effects of arfg;lible covariate on the usual F-
test. In addition, we will discuss some alternative procedures for the analy-
sis of data when the covariate is measured with error. Finally, we will brief-
ly discuss some methodological issues regarding the application of ANCOVA in

experiments where subjects are non-randomly assigned to treatment conditions.

I. Common misconceptions regarding assumptions of ANCOVA
Before discussing the abovementioned 'assumptions' of ANCOVA that can be found
in the psychological literature, we would like to stress the following points
that are of general importance in any discussion on the validity of a specific
model for the analysis of data. In order to fully understand the strengths and
weaknesses of a particular method, one should clearly distinguish between the
following points in the discussion.

First, one should clearly specify the mathematical model which is assumed
to be satisfied by the data. Second, one should give a specification of the
statistical assumptions concerning the model parameters such as distributiomnal
properties and covariances between parameters. Third, a distinction should be
made between properties of estimators for the parameters (e.g. expectation)

and the properties of statistics used to test various hypotheses with respect
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to the model parameters (e.g. significance tests). Last but not least, one
should clearly distinguish between statistical issues concerning the validity
of the application of a specific model and methodological issues concerning
the application of a specific model. A major issue in this paper will be to
show that several misconceptions concerning the validity of ANCOVA in certain
situations are due to a confounding of arguments that relate to different
aspects of the use of statistical methods. For example, it may well be the
case that the application of a specific statistical method is completely sound
from a statistical point of view but at the same time completely absurd from a

methodological point of view.

Equality of between- and within-groups regression coefficients

It is frequently mentioned that a valid use of ANCOVA requires that the popu-
lation values of the between- and pooled within-groups regression coefficients
should be equal (e.g. Evans & Anastasio, 1968; Winer,>1971, p.764).

The ANCOVA model used by Evans and Anastasio (1968) is

= + + ,. ¥+ E,,, (=1, ...,y j=1,...
yij U aj Bxlj sl(])’ i=1, Jry j=1 c

which is essentially the same as the model specified in Equation 1. Given this
model there is only one parameter that measures the relation between the de-
pendent variable and the covariate, i.e. parameter B. Hence, any reference to
different regression parameters or population values of these parameters could
on a priori grounds already be considered absurd. The only possible distinc-
tion that could be made is the distinction between various estimators of B and
their properties. In the usual textbook approach to ANCOVA one can find three
different estimators for the regression parameter B. These estimators are (1)

the pooled within-groups regression coefficient b (2) the between-groups re-

W!

gression coefficient bB’ and, (3) the total regression coefficient b These

I

coefficients are usually defined as

bW = Exy/Exx’ bB = Txy/Txx’ bT = Sxy/sxx’
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where £ denotes the within-groups sum of squares or crossproducts, T

denotes the between-groups sum of squares or crossproducts, and, § denotes
the total sum of squares or crossproducts (see e.g. Winer, 1971). Using the
assumption that the covariance between the error parameters and the covariate

is zero, it can be shown that the expectation of the pooled within-groups re-

gression coefficient bW is given by
E(by) =B ,

that the expectation of the between-groups regression coefficient b, is given

B
by

E(bB) =§ + rZaj(xj—x)/TXX,
and that the expectation of the total regression coefficient bT is given by
E(bT) =B + rzaj(xj-?)/sxx.

These expressions imply that only the pooled within-groups regression coeffi-
cient is an unbiased estimator for the regression parameter B. The other es-
timators are only unbiased estimators for B under the null hypothesis aj =0
(all ).

The test statistic that is commonly used to test this hypothesis is com-
posed of the adjusted between- and within-groups sums of squares defined re-

spectively as

*
Tyy r - (Sz /S__ - Ez

vy xy’' “xx xy /Exx) ?

and

£ =8 -

/E
yy ¥y Xy Xxx

It.has been shown by various authors (see e.g. Searle, 1971) that if the
sj(j)'s are independent normally distributed random variables with mean zero

*
and common variance 02, the random variable Tyy/oz has a non-central chi-
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square distribution with (c-I) degrees of freedom and the random variable
E:y/oz has a central chi-square distribution with (N-c-1) degreeé of freedom
where N stands for the total number of observations. Using the fact that the
random variables T:y/uz and Ezyloz dre independent, it can be shown that the

statistic @ defined as the ratio of these random variables divided by their
respective degrees of freedom has a non-central variance ratio or F~distribu-
tion with (c-1) and (N-c-1) degrees of freedom., Given that aj = 0 (all j) the
statistic @ has a central F-distribution with (c¢-I1) and (N-c-1) degrees of

freedom. Hence, the statistic @ can be used as a test for the null hypothesis

The conclusion of this discussion shoulq\ be clear. The requirement of
equality of the various regression coefficients mentioned by a number of au-
thors (e.g. Evans & Anastasio, 1968; Winer, 1971) does not prove to be neces-
sary for a valid application of ANCOVA. The misconception is probably due to a
confoﬁnding of arguments related to the properties of estimators for model pa-
rameters and the basic statistical assumptions related to the validity of es-
timation and testing procedures for the evaluation of treatment effects. For
example, it has been shown that the regression coefficient bT is not an unbi-
ased estimator for the regression parameter B except under the null hypothesis

of no treatment effect. The fact that b, is a biased estimator does not imply

T

that the model specified in Equation 1 is violated.

ANCOVA is ANOVA on residuals of the regression 1ine

Many researchers, especially in the social sciences, think of ANCOVA as being
similar to ANOVA performed on the residuals about the overall regression line
which describes the relationship between the covariate and fhe dependent wvari-
able. This idea has its origin in the terminology used in almost all textbooks
that discuss ANCOVA. Notably, the use of concepts like 'adjusted sums of
squares' strengthens such ideas. Researchers which hold this opinion on ANCOVA

are however in good company. The famous R.A. Fisher originally introduced
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ANCOVA as & standard ANOVA on the residual scores yij-bxij (sge e.g. Cox &
McCullagh, 1982). However, it was readily recognized that the ordinary F-test
of ANOVA on residual scores was only an approximate test for the evaluation of
treatment effects. Influenced by papers of Wishart (1934) and Wilsdon (1934),
R.A. Fisher therefore designed a new procedure for ANCOVA that gave an exact
F-test for treatment effects., This procedure was discussed in the preceding

section.

Insert Figure 1 about here

The following example clearly shows the differences between these approach-
es. Using the data in Figure 1, we performed an ANOVA on the residual scores
as well as the appropriate ANCOVA. These data can be thought of as being gen-
erated by Equation 1 with zj(j)=0. The results of these analyses, shown in
~Table 1, clearly demonstrate the difference between the two approaches. The

ANCOVA analysis correctly estimates the error variance (MS ) as nil,

within
while the ANOVA on the residuals leads to quite a different and obviously in-
correct estimate. Hence ANCOVA and ANOVA on the residuals are not the same and
only ANCOVA leads to a valid test for the null hypothesis. In a similar way
(for example using the data in Figure 2), it may be shown that use of the com-

mon within-groups regression coefficient as an estimator for the slope of the

regression line does not alter this conclusion.

Insert Table 1 about here
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Independence of treatment and covariate
Several authors, e.g. Evans and Anastasio (1968) and Winer (1971, p.754),
state that a necessary condition for a valid application of ANCOVA is that

treatment effect and covariate are uncorrelated. This implies that

Tax,=0
J J

which in general implies that all Fj's are equal. If this requirement would
indeed be necessary, quite a few applications of ANCOVA would prove invalid
(see also Sprott, 1970), since in many cases there are substantial differences
between groups on the covariate.

However, as mentioned in the introductory\;ection, the ANCOVA-model makes
no distributional assumptions with respect to the covariate, i.e. all xij are
assumed fixed constants. In particular, the model does not assume that all

Xij's are (independent) samples from the same distribution. As long as,

,, = U F aj -+ ij. + i=1,...,r; j=1,...c

Vi 77 i
is the appropriate model, Evans and Anastasio's requirement is not a necessary
assumption of the ANCOVA model nor is it mandatory for the validity of the F-
test used to evaluate treatment effects (see also Sprott, 1970). From a purely
statistical point of view, a valid application of ANCOVA does not require in-
dependence of covariate and treatment. In such a situation, ANCOVA does pre-
cisely what it is meant to do: adjust for the correlation between covariate
and dependent variable. Thus if the ANCOVA model holds, it is the best proce-
dure for evaluating treatment effects.

However, if the covariate is actually affected by the treatment or if co-
variate and treatment are correlated due to initial differences between the
experimental groups, ANCOVA adjusts not only for the variance due to the term
Bxij. It may also remove part of the treatment effect. Statistically this is
completely correct since ANCOVA is to remove all differences in the dependent

variable that can be explained by differences in the covariate. Potentisl re-
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moval of part of the treatment effect is thus not & statistical issue but a
methodological problem. The application of ANCOVA may not be §alid not be-
cause of a violation of necessary assumptions but because it gives an answer
to a question the researcher was not iﬁterested in! In such a case, ANCOVA
leads to the conclusion that the observed differences can be (partially) ex-
plained by differences on the covariate. This does not imply however, that
the observed differences hgve to be explained by the covariate. It may still
be true that there is no cgusal relationship between the covariate and the de-

pendent variable.

Insert Figure 2 about here

This can be clearly demonstrated by the following example. We generated
artificial data such that the within-groups regression coefficient was equal
to zero while the groups differed considerably on the covariate. In addition,
the data were generated in such a way that the treatment had a large effect on

the dependent variable (see Figure 2).

Insert Table 2 about here

The results of ANCOVA are shown in Table 2 together with the results of an
ordinary ANOVA on the dependent variable ignoring the covariate. Indeed,
ANCOVA in this situation removes not just part but allmost all of the treat-
ment effect. Thus, ANCOVA would lead to the conclusion cf no treatment effect.
As we have argued before, this is not due to a violation of necessary assump-
tions of ANCOVA in the present situation, but it is due to the fact that we

chose the wrong type of analysis. The question we wanted to be answered was
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Are there treatment effects 7? Instead we got an answer to the question: Are
there treatment effects that sannot be explained by differences oﬁ the covari-
ate ? 1If one is not interested in this question, one should not blame ANCOVA
for giving the wrong answer, but instead use a more correct procedure that may
give an answer to the appropriate question. Indeéd, in such a situation ANCOVA
should be used with great care. ANCOVA should only be used when it seems rea-
sonable to assume a causal relationship between the covariate and the depen-
dent variable. Once more we would like to stress that the decision is not
based upon statistical but on methodological arguments.

The validity of ANCOVA in the case where treatment effect and covariate are
correlated, was also discussed in some detai;\Py Sprott (1970). He showed that
Evans and Anastasio's requirement is not necessary for a valid application of
ANCOVA. However, in discussing the difference between an unconditional ANOVA
and ANCOVA, Sprott stated that the correct requirement for a valid use of
ANCOVA is that the treatment has no effect on the covariate. In the remaining
part of this section we will show that this statement is in its generality in-

correct. Sprott uses the following ANCOVA model:

= + +
Tip TR TR R @
where

su +0,.+u,,.
¥i7 T % 8 ey

In this model U, is the overall mean of the covariate, ej is the true effect

i

of the treatment on the covariate (Zej 0), and the uj(j) are independent

normally distributed random variables with mean zero and common variance of.
It can be shown by simple algebra that under the null hypothesis of no

treatment effect the total regression coefficient is an unbiased estimator for

parameter B. As in the case of Equation 1, the pooled within-groups regression

coefficient is always an unbiased estimator for parameter B. It is also easi-
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ly shown that the ANCOVA estimator of the treatment effect, aj, is -an unbiased

estimator of the true treatment effect since

E(aj) E((?j-y)-bw(xj'i'))

= a,
J

In addition, the expectation of the adjusted within-groups sum of squares is

given by

ECE. ) = (N-c-1)o%
yy = c ¢}

while the expectation of the adjusted betweéﬂ-groups sum of squares is given

by

E(T:y) = rI aj - (riap )2/ ¢rs 9§+(c-1)ci) + (c-1)0%

J

As before the usual statistic @ has a non-central F-distribution with (c-1)
and (N-c~1) degrees of freedom. Under the null hypothesis of no treatment ef-
fect, the statistic @ has agéin a central F-distribution with (c¢c~1) and
(N-c-1) degrees of freedom. This should come as no surprise since Equation 2
is equivalent to the conventional ANCOVA model (Equation 1).

It is clear, then, that the requirement ej = 0 stated by Sprott (1970) is
not a necessary condition for a valid application of ANCOVA. The problems
caused by an effect of treatment on covariate are once again not of a statis-
tical but of a methodological nature. ANCOVA provides the correct answer to
the question it is suppose& to answer. The technique should not be blamed if
it is used to get answers to questions of an entirely different nature.

However real statistical problems arise in a slightly different situation.

Suppose the data satisfy the model

y,, = U+ a

ij AL

SRIRZ{8))

where
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Xx,,=u_ +06,+%X%X,, .
17 X J 17

In this model ij is the (fixed) 'true' score of the observed covariate Xy
(i.e. the covariate score unaffected by the treatment). Note the difference
between this model and the previous one. In this case the linear relationship
is not between the dependent variable and the observed value of the covariate,
but between the dependent variable and the 'true' score of the covariate. It
can be shown that in this situation the statistic @ is not a valid statistic
for testing the null hypothesis aj = 0 (for all j) but instead it tests for
the composite hypothesis aj+88j = 0 (for all j).

The general conclusion should be, then, that the independence of treatment
and covariate is not a necessary requirement for a valid application of ANCOVA
as long as the dependent variable is linearly related to the obsérved values
of the covariate, that is, as long as Equation 1 applies. The problems men-
tioned in the literature concerning the application of ANCOVA in such a situ-
ation are based on misconceptions regarding the true nature of ANCOVA. These
problems do not relate to statistical issues but to the possible inappropri-
ateness of ANCOVA from a methodological point of view. We have shown that the
confusion arises from a confounding of arguments that relate to different is-
sues concerning the application of ANCOVA. Statistical analysis techniques
that are valid from a statistical point of view (i.e. provide correct tests
for the null hypotheses) may in a given situation be inappropriate from a

methodological point of view.

II. Measurement error in the covariate
One of the most widespread confusions regarding ANCOVA concerns the issue
whether a valid application of ANCOVA requires the covariate to be measured
without error. Overall and Woodward (1977a, 1977b) are frequently cited as

having shown that this requirement is not always necessary for a proper use of
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ANCOVA. In this section we will show that their results are misleading because
they apply only in a special case and, more importantly, we will show that the
general conclusion reached by Overall and Woodward regarding the applicability
of ANCOVA in case of a fallible covariate is wrong.

To investigate the implications of a falliSle covariate, we will use the

following model:

yl,j=u+aj+ﬁT1,j+sl,(j) (3)
and
Xy =u, 7t Tjj + si(j) (4)

where Tjj (ZTij = 0) denotes the true score of the observed covariate xij and
the Gj(j)'s are independent, normally distributed error variables with mean

zero and common variance og. We will further assume that
cov(e,b) = cov(T,8) = cov(T,e) = 0

Then it can be shown that the pooled within-groups regression coefficient can

be written as

E(bW) = pxxB
where
Yy (A+(N-c)o§) . (5)

In this formula, which gives the reliability of the covariate, 4 denotes the

pooled within-groups sum of squares of the true score of the covariate, i.e.

A=33(T . -T.)°
id T
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It is obvious that in this case bW is a biased estimator of the regression
parameter B. Overall and Woodward investigated the conditioms in thch the es-
timator of the treatment effect will be unbiased despite the presence of meas-
urement error in the covariate. It is easily shown that the usual estimator

for the treatment effect uj, aj,
a,= (v, - b (X X
;=GP - by(E D)

has the following expectation:

E(a,) =«

+ B(J-PX)QTJ' >

J J

where Pyx is given by Equation 5. It is cle@;\;hen, that in general the esti-
mator for the treatment effect will be biased. The estimator will only be un-
biased if Tj is equal to zero which is one of the cases studied by Overall
and Woodward (1977a). We will show however that even in this case application
of the standard ANCOVA leads to misleading and incorrect results. Most users
of ANCOVA are not so much interested in estimating treatment effects but in
demonstrating treatment effects through the standard F-test. The question
whether treatment effects are correctly estimated, is less relevant than sug-
gested by Overall and Woodward. They circumvented this problem by a cursory
reference to the robustness of the F-test. That such a naive confidence in the
robustness of the F-test may be quite inappropriate in the case of a fallible
covariate, will be shown in this section.

Using the assumption that £, 6 and 7 are independent, it can be shown that
the expectation of the adjusted pooled within-groups sum of squares E:y (giv-

en the assumption that T}=O) is equal to
* - al o 2
E(E, ) = 8 (1-p,) 2Tfj+ (N-c-1)o

while the expectation of the adjusted treatment sum of squares T;Y is equal

to
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o+
BT, ) =r Zu§+ (c-1)6%

Given the assumption that the Ei(j) and the 6i(j) are independent normally
#*
distributed variables, it can be shown that the random variable Eyy/oz has a
non-central chi-square distribution with (N-c-1) degrees of freedom, while the
#
random variable Tyy/cz has a non-central chi-square distribution with (c-1)

degrees of freedom. Hence, the statistic @ defined as
= (T [(c-1))](E. |(N-c-1))
@ =yl yy! (7°€

has a doubly non-central F-distribution with (c-1) and (N-c-1) degrees of
freedom (Johnson & Kotz, 1970). Under the null hypothesis, aj = 0 (for all j),
the statistic @ has a non-central F-distribution with (c-1) and (N-c-1) de-
grees of freedom. A necessarf requirement for the validity of the usual F-test
is that the statistic @ has a central F-distribution under the null hypothe-
sis. Otherwise the test will lead to biased results. It is clear, then, that
in the case of a fallibie covariate the usual F-test of ANCOVA is biased, even
in the case 7} = 0, considered by Overall and Woodward. The extent of this

bias depends on the size of the non-centrality parameter A,

X = (87(1-p, )1 TE 010

Insert Table 3 about here

The extent of this bias was determihed using Monte Carlo simulations. A
typical example of the results is shown in the lefthand part of Table 3.
These results are based on 5000 simulations of a two-group design with one co-
variate, using Equations 3 and 4 with u1=u2

2

xx='5’ g =o§=10 and r=10. A frequency distribution of the obtained values of

=0, T =T ,=0, u=50, u =0, B=5,

p
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Q was -formed using equally probable class intervals, i.e. the class limits
were determined from the percentile points of the appropriate F-distribution.
Thus, if the usual F-test would be valid, we would expect 500 observatiomns in
each class. The results shown in Table 3 indicate that the departure from the
expected values is quite substantial, showing that in the case T. =0, the

use of the conventional F-test>is incorrect.

While in the case Tj=0 the F-test is biased in the direction of acceptance
of the null hypothesis, it can be shown that as the ?} depart from zero, the
F-test will become increasingly biased in the opposite direction. As in the
preceding case, the statistic @ has, under the null hypothesis, a non-central
F-distribution with (¢c~1) and (N-c-1) degrees-of freedém, with a slightly more
complex non-centrality parameter. Monte Carlo simulation using the same pa-
rameters as before except 7}=-10 and'fé=10, resulted in the frequency dis-
tribution for the statistic @ shown in the righthand part of Table 3. It is
clear then that in this case the F-test is biased toward rejection of the null
hypothesis. Hence, the conclusion of Overall and Woodward (1977b, p.591)

Specifically, where subjects have been assigned at random, ANCOVA
can appropriately be used whether or not the concomitant variable
is measured with error. This case would seem to be generally ac-
cepted; however, unqualified statements about the Iinadequacy of
ANCOVA corrections when covariate measurements are fallible have
appeared in numerous articles iIin the psychological literature.
must be rejected as just another unqualified statement. Instead the conclusion
should be that in the case of a fallible covariate the ANCOVA procedure may
lead to biased and incorrect results, both with respect to the estimation of
treatment effects as well as with respect to the F-test for detecting signifi-
cant treatment effects. Depending upon the size of the departure of the ?}

from zero, the actual Type-I error rate will be negatively or positively bi-

ased compared to the nominal Type-I error rate of the F-test.

Nonrandom assignment and ANCOVA



The analysis of covariance 19

Usually, ANCOVA is used in a situation where experimental units have been ran-
domly assigned to treatment conditions. However, in quasi-experiﬁental or ob-
servational-type research one often cannot use this type of randomization, for
pratical and/or ethical reasons. The question arises then whether ANCOVA can
be considered an appropriate method to adjust for initial group differences
due to nonrandom assignment. Before addressing the more general models dis-
cussed by Overall and Woodward (1977a, 1977b), we will discuss two cases that
are quite typical in quasi-experimental designs. First, we will discuss the-
socalled regression discontinuity design (see Cook & Campbell, 1979) in which
subjects are assigned to treatment conditions using a fixed criterion based on
the observed covariate scores. Second, we wi{l discuss procedures that use a
probabilistic mechanism for the assignment of subjects to treatment conditions
based on the true score on the covariate.

The regression-discontinuity design is described by Cook and Campbell
(1979) as one of the nonequivalent control group designs useful in quasi-ex-
perimental research. It is appropriate whenever the decision whether the sub-
ject should receive some sort of treatment depends on the score on a pretest.
The logic behind this design is to classify subjects according to their scores
on the pretest. Subjects which score above (c.q. below) a specified cutting
point are assigned to the treatment group, while subjects which score below
(c.q. above) the cutting point are assigned to the control group. If the
treatment does have an effect, one should find a discontinuity at the cutting
point in the regression line computed between pre- and posttest scores. It can
be shown that ANCOVA is often appropriate for the testing of treatment effects
in this design, even in those cases where the covariate is fallible.

As we have emphasized above, ANCOVA will lead to statistically correct re-
sults as long as the data satisfy the model in Equation 1. Thus, the impor-
tant question is whether there is a linear relation between the dependent
variable and the observed covariate scores. If such a relation exists (under

the null hypothesis), there will be nothing statistically wrong with the ap-
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plication of ANCCVA. The question that remains to be answered is whether
ANCOVA will lead to correct results when the linear relation does not hold be-
tween the dependent variable and the observed values of the covariate but be-
tween the dependent variable and the 'true' scores of the covariate. Suppose
the covariate is measured with error and suppose furthermdre that (under the
null hypothesis) the dependent variable and the observed covariate scores have
a bivariate normal distribution. Then it follows from the properties of the
bivariate normal distribution (see e.g. Mood, Graybill & Boes, 1974) that the
conditional scores on the dependent variable satisfy a linear regression equa-
tion, even though the theoretical relationship is between the dependent vari-
able and the 'true' scores of the covariate. In this case, fhen, the ANCOVA
model holds even though the covariate is measured with error.

The application of ANCOVA in case of nonrandom assignment has also been
discussed by Overall and Woodward (1977a, 1977b). They primarily discuss the
case where the dependent variable and the covariate have a bivariate normal
distribution under the null hypothesis. However, they generalize the applica-
bility of ANCOVA to all situations involving nonrandom assignment of subjects
to treatment groups. According to Overall and Woodward, ANCOVA leads to valid
results whenever there is a fixed assignment rule that specifies the probabil-
ity of assignment to a specific treatment group, given the observed covariate
score. It should be evident, however, that this statement cannot be generally
correct. For example, suppose subjects are assigned with equal probability to
all treatment groups. Although in this case a fixed assignment rule is used,
it is in fact equivalent to random assignment of subjects to treatment groups.
Hence, the results discussed previously still apply. In particular, the F-
test will be severely biased.

As another example of a situation in which nonrandom assignment leads to
incorrect results when ANCOVA is used, consider the case where the covariate
scores are not normally distributed but are sampled from two separate distri-

butions. Suppose the two distributions are both normal with equal variances.
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If the two means of these distributions are more than, say, four standard de-
viations apart and if the cutting point used in the regression;discontinuity
analysis lies halfway between the two means, then it is obvious that this
analysis will lead to similar results as would have been obtained, had the as-
signment of subjects to treatment groups been based on random assignment from
these two distributiomns.

Apart from these statistical considerations, regression-discontinuity de-
signs may also criticized on methodological grounds. This may be clarified by
the following example. Suppose that there is no relationship between the de-
pendent variable and the covariate scores, i.e. the pooled within-groups re-
gression coefficient is zero. If in such a case a regression-discontinuity de-
sign is used in combination with ANCOVA, part if not all of the treatment
effect will be removed due to the fact that ANCOVA corrects for the artifi-
cially created correlation between treatments and covariate. This corresponds
to the example shown in Figure 2. Hence, such designs are not statistically
efficient with respect to the estimation of treatment effects. This has alsc
been shown by Goldberger (see Cook & Campbell, 1979, p.205). Goldberger com-
pared the power of the regression-discontinuity design with that of completely
randomized designs. His results showed that the completely randomized design
was 2.75 times as efficient in detecting treatment effects. This means that in
order to obtain the same power, regression-discontinuity designs require ap-
proximately 2.75 as many subjects. Hence, the assertion of Overall and Wood-
ward (1977b, P.594)

... random assignment is not an essential principle of good ex-
perimental design. The researcher is Iin a position to make strong
statistical inferences, so long as he controls the assignment to
treatment groups according to any of a variety of possible assign-
ment rules, only one of which Is random assignment.

may be correct from a purely statistical point of view, but does not take the

efficiency into account which is also part of good experimental design.
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IIT. Alternatives to ANCOVA in case of fallible covariate
measurements |
In the previous section we have shown that ANCOVA does not lead to valid re-
sults when the covariate is measured with error. A natural question to ask,
is whether there are feasible alternatives to ANCOVA for such a case that do
lead to valid results. In this section we will present some results that are
relevant to this issue. In discussing the alternatives to ANCOVA we will only
present the major results since a complete derivation of the formulas would go
beyond the scope of the present paper and will be presented elsewhere.

Suppose the data are in accordance with the following model

yjj u -+ aj + B(Tij-T) + si(j) (6)

~and

+

i3T5 85 o (7)

where Tjj denotes the‘true score on the covariate. It is assumed that the
disturbance variables e,,., and § ., ., are normally distributed with expecta-
](j) i(j)

tion zero and variances equal to of and cg, respectively. This is similar to

a well-known model that has been studied extensively in econometrics and math-
ematical statistics (see e.g. Kendall & Stuart, 1967) under the heading of
linear functional and structural relationships. The distinction between a
functional and a structural relationship is that in the former approach no
distributional assumptions are made regarding the Tjj’ whereas in the struc-
tural case one generally assumes that the Tij are sampled from normal distri-
butions with means uj and variances oi. This implies that in the functional

case all Tij are parameters (fixed, unknown constants), whereas in the struc-
tural case the Tjj are random variables that are characterized by the parame-
ters uj and 05. Note that this distinction is similar to the difference be-

tween fixed effects and random effects models in ANOVA.
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In this section, we will discuss procedures for estimating the parameters
for such models and methods for testing various hypotheses. We Qill give spe-
cial attention to the question how the conventional ANCOVA null hypothesis, o,
= 0 (for all j), should be tested. We will discuss and compare the usual F-
test, likelihood ratio tests, and a newly designed test for this hypothesis.
We will confine ourselves to a discussion of the distributions of these test
statistics under the null hypothesis. Questions concerning the relative power
of these tests are beyond’the scope of the present paper.

Both the structural and the functional case will be discussed. We will
present results concerning a number of special cases including aj=0, 05=0§,
and Pyx (the reliability of x) known. In each of these cases we will derive

consistent and, if possible, maximum likelihood (ML) estimators for the param-

eters of the ANCOVA model.

ANCOVA as a functional relationship
In the functional relationship approach, the true scores Tj. are not assumed
to be a random sample from a particular parent distribution, but are consid-
ered to be fixed, unknoﬁn constants (i.e. parameters). For simplicity, we will
restrict ourselves to the two-group case with equal n's. In that case we may

rewrite Egs. 6 and 7 as follows

<
It

+aZ,+ B(T, -T) + ¢.
u f 5(11 ) +

ij i(j)

=T, .+ 6, .,
X1j 1j i(j)
where Zj =1 for j=1, and Zj = -1 for j = 2.

This implies that the model has (Zn+5) parameters: TIJ’ TZJ""’ Tn]’
2

2 ' ,
T .y Tnz’ U, o, B, 08, and 05. The Tjj s are usually referred to as in

12°°°

cidental parameters, and the other five parameters are called structural. In-

cidental parameters are specific to individual observations, while the struc-
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tural parameters are common to sets of observations. The number of structural
parameters does not depend on the sample size. This kind of situation where
the total number of parameters increases with the sample size, was investigat-
ed in a classic paper by Neyman and Scott (1948). The presen;e of incidental
parameters poses a problem in statistical estimation since the standard defi-
nition of consistency in estimation becomes meaningless in this case. An esti-
mator is called consistent, when the estimate converges with probability one
to the true value as the sample size increases. The problem here is that the
convergence of the estimates for the structural parameters depends on the as-
sumptions one makes concerning the asymptotic behavior of the incidental pa-
rameters as sample size increases. It should perhaps be noted that the notion
of consistency obviously does not apply to the incidental parameters them-
selves. However, even if we make the assumption that the variance of the Tjj's
(and hence the variance of the xjj's) converges to a fixed value, the ML esti-
mators for the structural parameters are not necessarily consistent. An exam-
ple of this will be shown when we discuss the ML estimators for the parameters
of the functional model for ANCOVA. For the moment, it suffices to note that
the standard theory of ML estimation does not necessarily apply to this kind
of functional relationship model.

It should be noted that under the null hypothesis o=0, the present model
reduces to the famous linear functional relationship problem discussed by e.g.
Kendall and Stuart (1967) and Anderson (1976, 1984). In this case the likeli-

hood function is given by
_ 22 2.,-n o2yl 42 2,-1 e 2
L= (417050 )~ exp{-(20() © I (x; 7, (200) " EL (v, ;~w-B(T 7))}

It can be shown, however, that this likelihood function has no maximum. To il-
lustrate this fact, suppose we let Tjj = Xij' It is easy to see that with
this substitution I * « as c§ approaches zero. Since the likelihood function
has no maximum, maximum likelihood estimators do not exist (see also Anderson,

1984; Anderson & Rubin, 1956). Similar results can be obtained for the present
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- ANCOVA model in case « # 0. Estimation methods other than the ML-method do ex-
ist for this case, e.g. Geary's method of using product cumulanté (see Kendall
& Stuart, 1967). This method however becomes useless as the distribution of
the true scores Tjj approaches a normal distribution (in that case all cumu-
lants of order 2 3 are zero and the equation system used in estimating the pa-
rameters becomes unsolvable). Hence, it is to be expected that such a method

will not be very useful in practice.

The assumption of egqual variances

In order to obtain more meaningful results, we must either impose some re-
striction on the model or obtain additional information such as knowledge con-
cerning the reliability of the covariate; "The latter case will be discussed

in the next section. The most common identifying restriction that is made in

this situation is that the error variances of x and y are equal, i.e. of =
og. It should be noted that the more general assumption that of = Xog

(with X a known constant), is identical to the present restriction provided
that we rescale the observations accordingly. It should be clear that the re-
sulting estimates for u, « and B, will also have to be rescaled.

With this assumption, the following ML-estimators are obtained:
o)
T..={x_ .+ -y-3z +B®)}/C
1y = B 72z 48D
where C = (1+32), and Zj =] for j =1 and Zj = -1 for j = 2,

Vs

N
i

Ry
!

= 7,9 - BF,-®,

A2 _ A2 _
8 = (AW, -2 W )/2nC

and
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- . - 2
B W PO W I N

provided that W__#0. In these equations ¥__, ¥ _, and ¥ _ denote the pooled
Xy xx xy

vy
within-groups sums of squares and cross-products.
What can be said about the properties of these estimators? First of all,
let us consider the question of the consistency of these estimators. In order
for this to be meaningful, we have to make some assumption concerning the as-

ymptotic behavior of the incidental parameters. Let us assume that the pooled

within-groups variance of T,
2
2 (T, T,

converges to a fixed value Sz. In that case the sample pooled within-groups
T P

variances and covariances converge to

2
WXX/N i Si + oe

WV BSi

2 2
Vyy/N + B Sﬁ * 0.

Upon insertion of these results into the equation for 3, we obtain the result
that ? + B, and hence, 3 is a consistent estimator for 8. The estimator for
the error variance of, however,’is not consistent but converges to 05/2.
This illustrates the abovementioned fact that in the presence of incidental
parameters ML-estimators are not always consistent. In this case, however, the
inconsistency can be easily remedied by using 235 as an estimator for of.

In the remainder of this paper we will denote the estimator 235 by 32.
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Insert Figure 3 about here

Although the present estimator for P was derived using the ML-method, it is
of some interest to note that it is possible to give a least squares interpre-
tation to this estimator. It can be shown that the within-groups regression
lines based on 3 are such that they minimize the sum of squared distances of
the observed points from the fitted lines. That is, the parameter estimate

minimizes the expression
6= 1L {(y,-F,) - B(x, X )Yo/(148%).
1} 77 1j 7

Hence, ﬁ can be said to be a generalized least squares estimator for B. It is
not very difficult to see that the minimum value of ¢ equals 32, the consis-
tent estimator for of. This is illustrated in Figure 3, which shows some ob-
served points and the distances to the fitted regression lines. Such an esti-
mation procedure is also known as "orthogonal regression'. Note that this type
of regression is a compromise between thé conventional regression of y on x
and that of x on y. The regression of y on x minimizes the distances parallel
to the Y-axis, while the regression of x on y minimizes the distances parallel
to the X-axis. In orthogonal regression, one minimizes the distances perpen-
dicular to the regression line.

The present solution may be characterized in yet another way. It can be
shown (see e.g. Anderson, 1984) that it corresponds to the first principal
compénent of the pooled within-groups variance-covariance matrix; that is, the
line is in the direction of the maximal scatter. This leads to the following
‘quadratic equation in ﬁ:

¥ +Bw W ) -W_ =0
B Wy * BV ¥y xy
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The correct estimate is given by the positive root of this equation which
corresponds to the formula given above (the negative root leads fo inconsis-
tencies with respect to the other parameter, i.e. negative variance esti-
mates).

On comparing these estimators with those of the conventional ANCOVA model,
we may note a number of similarities. First of all, both 3'and bW (the regres-
sion coefficient in ANCOVA) are calculated from the pooled within-groups vari-
ance-covariance matrix. Hence, these estimates are not sensitive to the dif-
ferences between groups. Next, the estimation equations for both ? and Q are
identical to those of the conventional ANCOVA model, provided 3 is substituted
for bW' Therefore, the present analysis,p;gggdure corresponds to a conven-~
tional ANCOVA analysis provided that in the estimation of the slope of the re-
gression lines the measurement error in the covariate is taken into account.
We will make use of this correspondence in the construction of a test statis-
tic for the hypothesis a = 0.

Since we are using the ML-method, the most natural test statistic would
seem to be the traditional chi-square test based on the likelihood ratio sta-
tistic. In most statistical models a restriction on the parameters (such as «o
= 0 instead of « free) may be tested by a comparison of the likelihoced under
the general model (the traditional alternative hypothesis) with that under the
restricted model (the null hypothesis). Let us denote these by, respectively,
L1 and Lo. The likelihood ratio statistic A refers to the ratio Lo/LJ' The
maximum value of X equals 1 which is attained when the two models fit the data
equally well (this occurs when the estimates under the alternative hypothesis
already obey the restriction). The minimum value is equal to 0 which value is
approximated as the data deviate more and more from the null hypothesis. A fa-
mous theorem in mathematical statistics is that under quite general conditions
the distribution of the statistic -2lm) approximates, as sample size increas-

es, a chi-square distribution with the number of degrees of freedom equal to

the difference in the number of estimated parameters. This approach, however,
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breaks down in this case due to the presence of incidental parameters. The
reason for this is that the abovementioned theorem is based on the assumption
that the number of parameters does not change with sample size. This condition

is obviously violated in this case.

Insert Table 4 about here

This conclusion was verified by Monte-Carlo simulation of the present func-
tional ANCOVA model (see Table 4). These results show that -2In)\ does not ap-
proximate a chi-square distribution at’all;\ibt even when the sample size is
quite large.

In order to obtain a meaningful test statisﬁic we evidently have to take a
different approach. A possibly fruitful angle to attack this problem is pro-
vided by a reconsideration of the test statistic in the ordinary ANCOVA model.
It can be shown that in this model @ is normally distributed with mean « and
variance var(&). By standard methods an estimate of var(®), 53?(89, may be

obtained from the sample results. Hence,
t = (8-a)/Vva§(8)

follows a t-distribution with (N-3) degrees of freedom (N-3 since 3 degrees of
freedom are used up in the estimation of Y, a«, and B). In view of the well
known relation between the t-distribution and the F-distribution, tz follows
an F-distribution with 1 and (N-3) degrees of freedom. The important result
for our purposes is that in the case of the null hypothesis ¢ = 0, tz is
equivalent to the usual F-statistic in ANCOVA.

It happens to be the case that in the functional ANCOVA model, 2 is asymp-
totically normally distributed as ¥ * « (assuming the pooled within-groups

variance of 7 converges to a fixed value Sﬁ). Hence, we will consider the

test statistic
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kt = a/VGar(e)

for testing the null hypothesis a = 0. The problem is thus reduced to finding
a reasonable estimate for var(f). A first-order approximation of this variance

is
var(®) = oZ(1+85)/N + var(B)(u v /4

Furthermore, it can be shown (see also Robertson, 1974) that

var(B) = oZ((1+6%)5%+a%y (NS5) . (8)

Unfortunately, these formula's are large-sample approximations that are not
very good with small samples and/or large error variances (as was observed
from Monte-Carlo simulations). This is probably related to the fact that the
exactidistribution of 3 has some peculiar characteristics (e.g. infinite mo-
ments, see Anderson & Sawa, 1982). In unfavorable circumstances, these formu-
la's severely underestimate the variances obtained from Monte-Carlo simula-
tions. It turns out, however, that a simple correction for bias reduces many
of these problems considerably. It may be shown (see e.g. Robertson, 1974)

that the expected value of B is approximately equal to

) = Bl + of ((1+6%)8E4al) W (1487 )530)

Hence, this formula may be used to obtain an approximately unbiased esti-

mate for B, ﬁc:

A

H
Sc" B/C 3
where £ is given by

c=1+ 82{(1»«32).?; + 32}/{N(1+32)3§.} s

with
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a2 Az
32T—VXX/N 82,

Insert Table 5 about here

Simuiation results show that the variance of Ec is well approximated (even
with relatively small sample sizes) by Equation 8. A corrected estimate for «
is then given by:

A - -~ 2 -

a = (y;7¥) - B_(X;-%) . (%)

;Hence, we conclude that ﬁc and Qc are approximately normally distributed with
mean B and a, respectively, and variances var(g) and var(d) as given above. As
a final step, sample estimates have to be plugged into these formula's to ob-
tain estimated variances for ac and 3c' It turns out that the best approxima-
tion is provided by using 36, 32 and Nez/(N-3) in these formula's as estima-

T

tors for, respectively, 8, Si and of. Table 5 gives some results showing
how well the resulting test statistic for the hypothesis a = O approaches a
t-distribution with (N-3) degrees of freedom. Note that the approximation be-
comes better as cf decreases and as sample size increases. Although in some

cases the approximation cannot be said to be very good, it should be noted
that even in such cases the present test statistic is still always quite su-
perior to the usual F-test. Hence, we may conclude that the present test sta-

tistic is uniformly superior to the traditional F-test. Table 6 gives a nu-

merical example in order to illustrate the necessary calculations.
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Insert Table 6 about here

Extensions of the basic model

Similar procedures can be developed for a number of extensions of the above
model. The major problem with that model is the rather restrictive assumption
concerning the error variances. The assumption of equality of cf and og (or
the equivalent assumption that the ratio of these variances is known) may not
be realistic in many applications. This iéxsgpecially so since di will usu-
ally consist of two components, only one of which contributes to °§' These
two components are the measurement error and the error in the equation, i.e.
the deviation of the error-free dependent variable score from the value pre-
dicted on the basis of the functional relaticmship. 05 measures the combined
effect of these two scurces of variation, while 0§ consists of measurement
error only. However, there is no way out of this predicament unless we have
some additional information that allows us to identify the error variances
separately.

In practice, if we do have additional information, it will usuallly be of a
kind that allows us to determine or estimate the reliability of the covariate
measurements. One such instance was analyzed (in a not widely known paper) by
Lord (1960). This analysis (which is consistent with the general approach fol-
lowed in this paper) assumes that two parallel measurements of the covariate
are available. In effect, this assumption implies that replicated observa-
tions are available concerning the Tjj-scores. This of course allows us to es-
timate og from the replicated observations, and hence enables us to obtain a
separate consistent estimator for of (see Lord, 1960). However, it should be

noted that although we are in this case able to obtain consistent estimators
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for the parameters, these are not ML-estimators. The likelihood function for
this situation still remains unbounded, for similar reasons ‘as discussed
above. The same difficulty arises in all other cases in which we have addi-
tional information that allows og to be estimated. Howevér, consistent esti-
mators may be derived, based on the pooled within-groups variance-covariance
matrix. As in the model discussed in the previous section, the resulting esti-
mator for P may then be corrected for biés and an approximate t-test may be
constructed for the hypothesis a = 0.

It should be noted that the assumption of pargllel measurements is not nec-
essary. Consistent estimation is also possible when the 'true" covariate is
measured through two socalled congeneric tests. In this case a second covari-
ate, z, is available that is known to be correlated with the true score of x,
but is independent of £he errors of x and y. Such a variable z is usually re-
ferred to as an ipstrumental variable and its use in the estimation of the pa-
rameters of functional relationships has been studied in the statistical and
econometric literature (see e.g. Kendall & Stuart, 1967; Moran, 1971).

As an example, let us consider the case that the reliability of the covari-

ate, Pyx? is known. In that case, og may be estimated as
A2 _

O = (17 Wi /¥

Hence, gz is given by

T

3? = PVXX/N )

Consistent moment estimators for the remaining parameters may now be obtained

as follows. The estimator for B is defined as:
A

B =w, /8]

Estimators for a and of are given by

&=, -8FD



The analysis of covariance 34

2

2 _ _ &
35'”yy/” 8755

Using standard methods, it may be shown that the expectation and variance of B

are approximately equal to

EB) = U1 + 25Eai Nty

2
g

var(R) = (sZ(olep%ol 4o’ st - 28PogNistral)?

As in the previous case, an approximately unbiased estimator for B, 3c’ may be

obtained as follows:
n

B =B

where € is given by

_ AZA2 2
c=1+ zsiaa/n(ﬁzzfag)

The corrected estimator for o, Qc, is defined as hefore (see Equation 9). The
variance of Qc will be approximately equal to
22 N 2

var (&) = (oiﬂs og)/N + var(B) (u,-u,)"/4 .

As before, these formulas are large sample approximations. Using similar argu-
ments as in the previous case, a t-test may be constructed for the null hy-
pothesis @ = 0. As an illustration Table 7 gives the necessary calculations
when this procedure is applied to the numerical example given by Lord (1960).
Since the number of observations is in this case different in the two groups,
it is easiest to test the hypothesis a_-a =0 instead of a=0. The approximate

1 2

variance of 31—32 is then given by:

var(o’?j‘—éz) =~ (0§+820§)N/(n1n2) + vczr(@)(ul—uz)Z S
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Insert Table 7 about here

One of the assumptions of ANCOVA (see e.g. Equation 1) is the equality of
the within-groups regression coefficients. In the ordinary ANCOVA model this
assumption may be tested by comparing the residual sum of squares about the
within-groups regression lines based on the pooled estimate for the within-
groups regression coefficient with the residual sum of squares obtained by us-
ing a separate regression coefficient for,gg;h group (see e.g. Winer, 1971,
p-772-773).

A similar approach may be followed in the present case. The ANCOVA model
defined in Equations 6-7 is based on the assumption of a single, common, re-
gression coefficient B. A test for the equality of the within-groups regres-
sion coefficients may be obtained, starting from a model with separate regres-
sion coefficients, i.e. ﬁquation 6 with Bj substituted for B. Under the

2

assumption that o = cg, Bj‘may.be estimated from the sums of squares and

crossproducts in group =1t may be shown that a ML-estimator for Bj is'given

by
2o 2 &;? \
=W, W, +\/ -K, +4W°, W, s
BJ { Jsyy " J.xx mj,yy J»XX) J:XY}/ Jsxy
where ¥ is the sum of squares or crossproducts in group j. As before, un-

Js--

biased estimates for the Bj's may be obtained as follows:
A

, =P./C
BJ,C Q}/
where C is equal to

821148982  + & 2)8%

= + 1+B", 3 + 1+B7, R

¢ =1+ 88 L+ Ein8)8, 1)

In this equation 32 and 35 T are given by
1]
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_ Z .
8 =1 A% 2B W, < y)/N(1+3§)

J oJsxx 7T jixy
and

_ _AZ
35,7' =¥ xl® 3

In large samples, 3} c will be approximately normally distributed with mean Bj
b

and variance var(aj),

»

s 2e a2y 2, 2, 4
var8 ) = oL((18D)5% | + a13ins 1

where sample estimates have to be substituted for population parameters, using

N32/(N-4) as an estimator for 05. The null hypothesis 81 = Bz may be tested

with the statistic
t = (31-321/\’2?7;\

where
s? = a8 + axd )2

This statistic is approximately t-distributed with (N-4) degrees of freedom.
It should be noted that if the assumption éf equal B's has to be rejected, ap-
plication of the ANCOVA model should be strongly discouraged, since the re-
sults will generally not be meaningful. In that case, a comparison between

groups depends on the value of the covariate (see e.g. Tatsuoka, 1971).

ANCOVA as & structural relationship

In the structural relationship approach, the true scores Tj. are assumed to be

2

randomly sampled from normal distributions with means u, and variances aj.

7
Given this assumption, the data in each group follow a bivariate normal dis-
tribution. It is then possible to derive ML-estimates for the parameters of

the model by maximizing the likelihood function. Since these ML-estimates may

be obtained from the LISREL-program (Joreskog & Sorbom, 1981), we will not



The analysis of covariance 37

present the likelihood function nor any of the equations that can be derived
for the parameter estimates. |

Although it is not entirely clear why, it turns out that the ML-estimates
do not behave very well unless it is assumed that of = og (except when the
model fits the data perfectly). Perhaps this should come as no surprise since
ML-estimators do not exist in the corresponding functional model. We will re-
turn to this problem later on in this paper.

As the LISREL model will be used extensively in the remainder of this sec-
tion, we will briefly discuss its basic equations. For a more detailed intro-

duction to the LISREL approach we refer to Lomax (1982, 1983). The LISREL mod-

el is based on the following structural equation system
n=38By+ T8 +3

where B and T are coefficient matrices, n and § are vectors corresponding to
the latent dependent and independent variables, and I is a vector of distur-
bance variables. The latent variables arevrelated to the observed independent
and dependent varisbles x and y, respectively, through the following measure-

ment model:

x = AXE + §
and
y=Ayn+s >

where Ax and Ay contain the regression coefficients of x and y upon & and n,
and § and &£ denote the measurement errors in the observed variables. The meas-
urement error in x is assumed to be uncorrelated with the measurement error in
y. In addition, it is assumed that the measurement errors are not correlated
with the latent variables n and £, and the disturbance variables . Further-
more it is assumed that the disturbance variables ¢ are uncorrelated with §,

and that the latent variables and the disturbance variables have zero expecta-
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tion. The LISREL model is completely specified if the variance-covariance ma-
trices of the measurement errors £ and §, the disturbance variablés Z, and the
latent variasbles § are suitably defined. Provided the model is identifiable,
the parameters of the model may be estimated by fitting the variance-covari-
ance matrix expected under the LISREL model to the observed variance-covari-
ance matrix by using a suitable loss function (Joreskog & S&rbom,. 1981).

The reader familiar with the factor analysis model may have noted that the
LISREL model is equivalent to a restricted factor analysis model in which the
factors, n and §, satisfy a linear structural equation system as the one de-
fined above. Extensions of the LISREL model given above include the multi-
sample model and the socalled structured mea§§\model. The former extension al-
lows one to specify a separate LISREL model in each group. In addition, one
may specify equality constraints on the LISREL parameters over groups. The
structured means model offers a relaxation of the assumption that the random
variables in the model have zero expectation. A combination of these exten-
sions leads to the most general LISREL mo&él, the structured means multi-sam-
ple model. For a more complete description of the LISREL model and examples of

its use, we refer to Lomax (1982, 1983) and Joreskog & SSrbom (1981).

The case of equal variances
In this section we will discuss the analysis of the structural ANCOVA model
using the LISREL approach. Using the LISREL terminology, the basic equations

of the structural ANCOVA model, Equations 6 and 7, may be rewritten as fol-

lows:
, . o , . +a - 1 o
" B "4j wha B [ ]
= * +
T.. o o) \T.. , T.,-y,
1J 1J uJ 1] uJ
, . g . .,
Yij 1 iy 1),
= +
x g 1 T

, 6., .
ij ij i(j)
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Since in each group the equations contain constant intercept terms, equal to,
respectively, u+aj-6T and uj, we have the structured means vefsion of the
LISREL model. This implies that the LISREL specification should contain an x-
variable which is identical to 1, and thus coincides with £. The intercept
terms are included in the matrix T. In this case, one should analyze the raw
moment matrix instead of the covariance or correlation matrix. In addition,
the fixed-x option of LISREL should be used (see Joreskog & Sdrbom, 1981).

Under the assumption that di = cg, the model contains 3g+2 free parame-
ters: B, af, and for each of the g groups u+aj~BT, uj, andioﬁ. The esti-
mates of of and 05 are given by the variance-covariance matrices of ¢ and ¢.
The null hypothesis aj = 0 may be tested by‘ggnstraining the intercept parame-
ters u+aj-BT to be equal. The appropriate likelihood ratio (LR) statistic for
testing this hypothesis is formed by subtracting the chi-square value reported
by LISREL under the unconstrained model from the chi-square value obtained in
the restricted case. In large samples this statistic follows a chi-square dis-
tribution with (g-I1) degrees of freedom.

It should be noted, however, that the chi-square values reported by the
LISREL program are incorrect. It turns out that the reported chi-square values
should be multiplied by a factor mr/(n-1), assuming equal n's in each group.
(No simple correction can be applied if the groups contain unequal numbers of
observations, since the LISREL program does not report chi-square values for
each group). The reason for this discrepancy is that the LISREL model is
based on the assumption that the observed covariance matrix follows a Wishart
distribution. The structural ANCOVA model, however, is based on the assumption
that the observations in each group follow a multivariate normal distribution.
Although these two assumptions are closely related, they are not equivalent.
In particuiar, the likelihood functions are slightly different. This differ-
ence implies that the chi-square wvalues in each group have to be corrected.

This is generally the case if intercept terms are included in the model and

the raw moment matrix is analyzed (see JSreskog, 1973, p.93).
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Insert Table 8 about here

An example of the LISREL approach to the analysis of a linear structural
ANCOVA model is presented in Table 8. This table includes the appropriate pa-
rameter estimates and the corrected chi-square values. The example which will
be discussed, is the same as was used to illustrate the functional solution
(see Table 6). These dgta were generated in such a way that the observed sta-
tistics would correspond almost perfectly to\§\structura1 ANCOVA model. There
are only two minor deviations from the model as presented above: (1) the two
2

groups were slightly different with respect to the parameter B, and (2) s

and oi were also given different (but nearly equal) values. The parameter

= = = = = = 2
values were: u = 0.0, a = 1.6, BJ 2.1, BZ 1.9, ul 5.0, u, 8.0, 01
= 10.0, Oé = 15.0, Of =1.9, og = 2.1 and n = 10 in each group. The result-

ing moment matrices are given in Table 8.
Note that the parameter estimates closely resemble the corresponding func-
tional estimates. Thus, the latter values may be used as initial estimates

for the structural parameters. Initial values for the two remaining parame-

ters, of and ag, may be obtained from the following formula:
2 2 z 2 2 2 2.2
. = + At - ¥+ 1+

3] (sx(j) zﬁsxy(;) B Sp(i) N¢ 34071485

These initial parameter estimates are quite useful since the LISREL program
may arrive at an incorrect solution when supplied with bad initial estimates.
Incorrect solutions are not infrequent in LISREL and are characterized by neg-
ative variance estimates in the ¥ matrix. The LISREL program may generate such
solutions because it does not restrict the variance estimates to non-negative
values. It turns out however that in many cases the likelihood function has

several (local) maxima, only one of which is in the correct parameter space.
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This is a serious flaw in the LISREL program that one should be aware of. For
example, when supplied with bad initial estimates, LISREL obtaiﬁed an incor-
rect solution (under the alternative hypothesis) for the numerical data given
above with a chi-square value of 0.37. It should be noted that the remark in
the LISREL manual (J6reskog & SOrbom, 1981, p. 31-32) that such a solution in-
dicates "that the model is wrong or that the sample size is too small" is in-
correct. Instead, it will always be necessary to check the appropriateness of

the solution using different initial estimates.

Extensions and further tests of the structural model

Qur solution to the fallible covariate problem in the structural case (as well
as in the functional case) is based on thé\éisumption 05=U§. As mentioned
in the discussion of the functional model, this a very restrictive assumption
that is difficult to defend. It is not known to what extent violation of this
assumption biases the results of the analysis. In particular, we do not know
whether this leads to a substantial bias in the likelihood-ratio test for the
ANCOVA null hypothesis. Although the present case seems quite similar to the
functional case, there are some important differences. In the functional mod-
el, the parameters of and og are not both identifiable (unless additional
information is present). In the structural model, on the other hand, these
parameters camnot be said to be unidentifiable. The reason for this is that
these parameters are estimated correctly when the observed covariance matrix
(or moment matrix) fits the model exactly, i.e. if a perfect solution is pos-
sible. Problems arise however as soon as the observed matrix deviates slightly

(and nonsignificantly) from the predicted structure.

Insert Table 9 about here
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In order to demonstrate this point, we generated a number of moment matri-
ces which violated the assumption of=o§ in varying degrees. In éach case,
oi was set equal to 2.0, while o§ was varied between 2.0 and 17.0. The re-
maining parameters (except for BJ and Bz) were equal to those used to generate
the data in Table 8. When the regression coefficients in the two groups, 81
and 62, were set equal to each other (in which case a perfect solution is pos-
sible), the correct solution was always obtained and all the parameter esti-
mates were equal to the true values. However, when 61 and BZ were given
slightly different values, strange and unexpected results were obtained. Note
that none of these datamatrices violate the structural ANCOVA model with
oi#dg to any significant degree. Table 9 givg;\the most important results of
this analysis. In this table, the estimates for of and og are given as well
as the chi-square values from the LR-test for the hypothesis o§=o§. These
parameter estimates were not obtained with the LISREL program, but with a gen-
eral purpose minimization program that allows upper and lower limits on the
parameter values (James & Roos, 1975). This program was used because in these
cases the LISREL estimates for Gf and og were often outside the admissible
parameter space (LISREL does not restrict the parameter estimates to values
within the admissible parameter space). For these parameter values, the re-
sults are very unstable and strongly dependent on small differences in 61 and
B,

The lefthand part of Table 9 gives the results for ﬁ1=1.9 and BZ=2.1. In
this case of was always estimated as 0.0 (the lower bound), while o§ was al-
ways overestimated in a systematic way: the estimated value for ag was equal
to the true value plus a constant (0.499). More importantly, the LR-test does
not seem to be very sensitive to changes in Ug (although the chi-square val-
nes become slightly larger as og deviates more and more from of). In all
cases, the value of this statistic is quite small and never leads to rejection

of the hypothesis °f=°§' The righthand part of Table 9 gives the corre-

sponding results for Bl=2.1 and 52=1.9. Although the regression coefficients
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have not been changed very much, the pattern of the parameter estimates is
completely different from the previous case. In this case, cf ié grossly ov-
erestimated while ug is severely underestimated. Moreover, the chi-square
values of the LR-test decrease with increasing differences between 0f and
og. Hence, we may conclude that the hypothesis of=o§ is not testable and
that the separate estimation of cf and o§ leads to unsatisfactory results.
More satisfactory results can only be obtained if we have additional infor-
mation that allows the identification of both ai and cg. Suppose for exam-
ple, that we know (or have information that permits the estimation of) the re-
ligbility of the covariate, Prx” In. that case, og might be fixed at
(l-pxx)Wxx/N, as in the corresponding functional case. This allows of to be
estimated. Although this does not correspond to the conventional ANCOVA model,
knowledge regarding Pyx allows one to estimate separate error variances within
each group. It is usually assumed that the measurement error og is equal in
all groups. If there is reason to suspect that this assumption is not correct,

separate reliabilities should be used for the estimation of these variances.

Insert Table 10 about here

As an example of such an analysis with different reliabilities, we reana-
lyzed Lord's numerical example (Lord, 1960). Three types of analysis were per-
formed, the results of which are givem in Table 10. Model I is the type of
analysis we have just described, adapted to this situationm, i.e. og in each
group is set equal to (l-pj)wj,xx/nj' Model II is the co?rect analysis given
the assumption of unequal measurement errors. In this analysis og was set
equal to d?(l-p)/p, where oj is the true score variance in group j. Since

the LISREL program does not allow such a restriction on the parameters, these

estimates were obtained by direct minimization of the appropriate likelihood
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function using a general-purpose minimization routine. Another type of solu-
tion was presented by SOrbom (1978). Sorbom used the informatioﬁ concerning
the reliabilities in a different way. Instead of fixing or restraining og,
Sdrbom created an artificial second covariate which was constructed in such a
way that the two covariates were éarallel measurements with a correlation
equal to the observed reliability. In doing so, Sorbom followed the original
approach taken by Lord (1960) who analyzed these data in a similar way. Model
III gives the estimates for this analysis obtained with the LISREL program
(for reasons unclear to us, the results deviate somewhat from those reported
by Sorbom, 1978).

On comparing the results, it is evident t@gt there are only minor differ-
ences in this case between the three approaches. However, if one does not have
easy access to a general-purpose minimization routine and prefers to use the
LISREL program, it is in our opinion advisable to use the Model I type of
analysis instead of the Model III or Sorbom type of analysis. The behavior of
the likelihood function may depend on the assumption of independent parallel
‘measurements (which are in fact not available) and this might affect proper-
ties of the estimates such as their standard errors.

It should perhaps be noted that, as in the functional case, it is not nec-
essary to know the reliability of the covariate or to have parallel measure-
ments. Sufficient information to solve the problem is available when the co-
variate is measured by twe congeneric tests. That is, when two independently
observed covariate scores are available with true scores that are linearly
related. Since we have already discugsed the use of such instrumental vari-
ables in the functional case and since this case has been dealt with quite ex-
tensively by Sorbom (1978), we refer the interested reader to that paper for
further details (see Carter & Fuller, 1980, for a discussion of the asymptotic
distribution of such estimates for B).

Finally, a likelihood-ratio test for the assumption of equal within-groups

regression coefficients can be obtained in a straightforward manner with the
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LISREL program. However, contrary to the assertion of Sorbom (1978), it is not
possible to test the null hypothesis aj=0 with the LISREL progrém if the as-
sumption of equal regression coefficients is not temable. The reason for this
is that in the model underlying the LISREL approach the test for aj=0 is not
independent of interval scale transformations of the covariate measurements.

In the LISREL approach to ANCOVA, the model may be written as

LTRRT MRS FTAREE)

where

The ANCOVA null hypothesis is tested in LISREL by comparing the uj's. The
problem now is that these uj's may be different even though uj=0 (for all j).
Moreover, scale transformations of 7 affect the outcome of this likelihood-ra-
tio test. However, as we have already mentioned earlier, it is best not to
proceed with an ANCOVA type of analysis when the assumption of equal regres-

sion coefficients has been rejected.

Conclusions
In this paper we have critically examined several problems and confusions con-
cerning the proper use and interpretation of the analysis of covariance. The
most general conclusion is that if the ANCOVA model as stated in Equation 1 is
correct, there is nothing statistically wrong with the application of ANCOVA.
None of the other assumptions that are frequently mentioned as being necessary
for a valid application of ANCOVA, such as equality of between- and within-
groups regression coefficients or independence of treatment and covariate, are
in fact required for a valid use of ANCOVA. The confusion concerning the situ-
ations in whiéh ANGCOVA should or should not be applied, seems to be due to an
incorrect interpretation of the conclusions that can be drawn from such an

analysis.
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The application of ANCOVA in situations where intact or non-equivalent
groups are used, does however present a methodological problem. In such situ-
ations, researchers often use ANCOVA as a means to correct for initial differ-~
ences on the covarigte. Such a (mis)use of ANCOVA is in general not correct
and cannot be defended in view of the rationale underlying the ANCOVA F-test.
As we have emphasized repeatedly, ANCOVA only tests whether there are differ-
ences between the various experimental conditions that cannot be explained on
the basis of the covariate alone. In this respect, ANCOVA is equivalent to the
test of a partial correlation coefficient. In such a test, the proportion of
variance that could be attributed to both predictors, is not reflected in the
partial correlation coefficient. Such a coefficient only indicates the contri-
bution that is unique to a particular predictor. A nonsignificant partial cor-
relation coefficient does not indicate that that particular variable has no
causal influence on the dependent variable. It only indicates that knowledge
of that variable does not improve the prediction of the dependent variable,
given knowledge of the other pfedictor variable(s). Hence, ANCOVA is no sub-
stitute for experimental control, and the logic of ANCOVA gives no support for
its use as a means to "equate" intact, non-equivalent groups.

Such an incorrect usage of ANCOVA has been criticized quite cogently in the
past. Thus, Anderson (1963, p. 170) remarks: "One may well wonder what exactly
it means to ask what the data would look like if they were not what they are".
A similar point is made by Lord (1969) who argues that a statistical technique
such as ANCOVA cannot, in principle, answer the question what the results
would have been had the groups been comparable on the covariate. The answer to
such a question obviously depends on the means used to achieve equality on the
covariate, and, hence, no general answer is possible. It should be noted how-
ever that in this case the difficulty has nothing to do with the statistical
rationale underlying ANCOVA, but that the problem is related to the correct
interpretation of the results of such an analysis. The confusion seems to be
due to the fact that ANCOVA is generally regarded as a kind of ANOVA on cor-

rected scores, a view which we have shown to be incorrect.
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A major part of this paper was devoted to a consideration of the effects of
measurement error in the covariate. We have shown that, except iﬁ certain spe-
cial cases, a conventional ANCOVA is never appropriate with fallible covari-
ates. Contrary to statements voiced in the literature (Overall & Woodward,
1977a, 1977b), ANCOVA will not only lead to incorrect results when the assign-
ment of subjects to groups is non-random but also when a random assignment
procedure is used, that is, when the means of the various groups on the covar-
iate are equal. The only exception that we are aware of occurs when the covar-
iate and the dependent variable have a bivariate normal distribution (under
the null hypothesis). In that case, there will be a linear relation between
the dependent variable and the observed covariate scores and therefore the
usual ANCOVA model applies. Note that contrary to statements in the litera-
ture, this has nothing to do with whether or not a fixed assignment rule has
been used.

Generally speaking, when the covariate is measured with error, a functional
or a structural relationship Aﬁproach is called for. Examples of both types
of analysis have been given for a simple two-group design. Several cases have
been discussed and we have given special attention to issues of model identi-
fiability. An approXimate statistical test based on the functional relation-
ship approach has been constructed. On the basis of our simulation results it
may be concluded that this testing procedure is to be preferred to the conven-
tional F-test of the ANCOVA null hypothesis. Further analysis of this approach
to the problem of fallible covariates is obviously desirable, especially re-
garding its extension to more complicated ANCOVA designs. If one is willing to
assume & normal distribution for the covariate scores in each group, the
ANCOVA model may be formulated as a structural relationship problem. In this
case, an analy;is based on the LISREL methodology should be performed. It
would seem that in both the functional and the structural case, knowledge of
the reliability of the covariate is desirable. In most cases, one should try
to obtain parallel measurements of the covariate. With such additional infor-

mation, arbitrary assumptions concerning the error variances can be avoided.
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A general conclusion that may be drawn from cur analysis is that in discus-
sions of the applicability of a certain statistical technique oné should al-
ways try to keep statistical and methodological issues apart. Statistical is-
sues can only be decided on thé basis of a clear presentation of the
statistical model that is assumed for the data. Methodological issues, on the
other hand, require an awaren;ss of the exact nature of the testing procedure
on which conclusions are being based. Had such a strategy been taken in the
past, the confusion concerning the prdper use of ANCOVA probably would have -

been eliminated years ago.
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" Pootnote
This article represents the equal contribution of the two authors. Requests
for reprints should be sent to Jeroen G.W. Raaijmakers, Psychologisch Labora-

torium, P.0. Box 9104, 6500 HE Nijmegen, The Netherlands.
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- Table 1
- Comparison of ANCOVA to ANOVA on
- residuals of overall regression line

(data of Figure 1)

ANCOVA ANOVA on

residuals
Source 88 58
Between groups 9.60 3.84

Within groups 0.00 5.76

Total 9.60 9.60
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Table 2
Results of "ANOVA and ANCOVA when B=0 and
treatment and covariate are correlated

(data of Figure 2)

‘Source ANOVA 88 ANCOVA §S
- Betwaen‘grouﬁs , 22.5 0.957
Within groups S 1.0 1.0

Total 23.5 1.957
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"Table 3
Frequency distribution of Q-statistic in
case of measurement error in the covariate

(expected frequency in each class is 500)

Q-statistic
class , TI?=T2 TI#T2
1 606 - . __ 2
2 693 1
3 633 3
4 604 7
5 583 2
6 513 12
7 475 28
8 392 44
9 325 152
10 176 4749
chi-square 463.88 40158.07-

(df=9)
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Table &

Goodness-of-fit (X2, df=9) of likelihoodratio

statistic to chi-square distribution (df=1)

T,=T,=0 T, = -10, T, = 10
n p B=1 =5 g=1 =5

.5 2501.89  2546.16 4259.84  2191.49

10 .7 2491.91 2534.63  3046.11  2134.68

.9 2519.33  2537.54 2450.66 2086.76

.5 1476.86  1399.33 3653.92 1676.22

50 .7 1477.79  1410.75 2305.60 1599.18

.9 1465.79  1418.30 1654.21  1565.14

.5 1362.81 1397.32 3484.50  1623.82

100 .7 1357.24  1373.61 2372.22 1559.05

.9 1354.54  1377.94 1669.68  1478.92
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Table 5

Goodness~of=-fit values (chi-square, df=9) for proposed

t-statistic in comparison to conventional F-test

t-statistic

conventional F-test

T1=T2 TI#T2 T =T2 Tl#T2
n B=1  B=5  B=1 B=5 =1 B=5 B=1 B=5
13.6 30.6 555.1 822.3 54.1  463. 16975.4 40158.1
10 12.9 20.0 210.6 339.7 33.7 123. 6574. 20921.2
17.6 23.5 47.4 91.2 6.7 13. 771. 2621.6
11.1  15.2 151.9 173.9 60.9 602.3 44940, 45000.0
50 10.0 16.4 45.2 72.9 40.4 195. 43263.0 45000.0
11.5 15.9 12.1 17.5 8.6 21. 18554. 35816.3
7.7 15.9 94.5 136.9 79.4 623. 45000. 45000.0
100 . 6.5 15.0 44.9 65.6 45.6 206. 44980. 45000.0
7.6 14.9 23.5 32.8 11.6 39. 37251. 44740.5
Note: Maximum value of chi-square is 45000,
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Table 6

Numerical example of the proposed test procedure

Pooled within-group covariance matrix:

Y X
Y |51.025 y1=-1.55 y2=1.25
X 124.750 14.600 x,= 5.00 x2=8.00
n.=10 n2=10

1

Successive steps in calculatiﬁ§\test statistic:

B=1.977 \ B=1.961
A=1.566 a‘c=1 .542
32=1.042 2N3§/(N-3)=2.451
8%=282=2.084 vaz(B)=0.049
§2-12.516 VEX(8)=0.705

t(17)=1.836
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Table 7

Application of test procedure to example

discussed by Lord (1960)

Data:
group 1 group 2

number of cases 119 93
dependent variable,Y

meaﬂ 1.40 1.57

s.d. 0.75 0.61
covariate, X

mean 4.07 5.34

s.d. 2.30 1.97
reliability of X 0.80 0.73
Computed values:
pooled reliability, p 0.7735
error variance of X, '} 1.058
true score variance, g% 3.614
slope estimate, g 0.241
error variance of Y, 3: 0.269
corrected slope estimate, 3c 0.241
estimate of group difference, 31-32 0.136
variance of B_ 0.000506
variance of & -3, 0.007146
test statistic, t(209) 1.609
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Table 8

Numerical example of the analysis of covariance

as a linear structural relationship

Observed moment matrices (input for LISREL):

Group 1 (n=10)

Y X

Y }48.403

X }13.250 37.100

1 -1.550 5.000

Group 2 (n=10)

Y X

57.613

~ ]38.500 81.100

1.000

1.250 8.000

1.000

Maximum likelihood solution for parameters:

HO: a=0 le a0
2 -0.150 -0.150
? 0.0 1.566
[ 1.874 1.977
ﬁl 5.586 5.000
ﬁz 7.414 8.000
a§ 11.830 - 10.986
82 15.190 14.055
32 2.555 2.084
LISREL x>  4.29 0.22
(corrected) df=3 df=2

Test of HO:

2

X'=4.07, df=1
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Table 9
ML-estimates for oz and o§ and x2 value of
likelihoodratio4test for the hypothesis o§=o§
as a function of true values of cg, Bl
and B, and 65=2.0

Bl=1.9, 62=2.1 Bl=2.1, 62=1.9
T 02 g2
2 0.0 2.499 0.09 8.879 0.0 .160
3 0.0 3.499 0.10 11.@05 0.0 .122
5 0.0 5.499 0.11 14.436 0.804 .069
7 0.0 7.499 0.13 15.059 2.515 L0641
9 0.0 9.499 0.14 15.487 4.312 .026
11 0.0 11.499 0.15 15.801 6.159 .016
13 0.0 13.4%9 0.17 16.043 8.039 .009
15 0.0 15.499 0.19 16.235 9.943 .005
17 0.0 17.499 0.20 16.391 11.864 .003
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Table 10
Analysis of Lord's numerical example according to
structural equation model with different reliabilities

in each group (see text for explanation)

Model 1 Model II Model III

ﬁ 1.466 1.466 1.466
4 0.069 0.068_  0.069
B 0.243 0.241 0.242
31 4.070 4.070 4.070
ﬁz 5.340 5.340 5.340
Gi 4.326 4.196 4.282
ag 2.580 2.792 2.662
951 0.273 0.275 0.271
352 0.249 0.250 0.256
321 1.058 1.049 1.033
82 1.058 1.046 1.084
62
X% test  2.67(%)  2.64 2.92(%)
for a=0
Note:

(*) uncorrected value from LISREL program



Figure 1

Figure 2

Figure 3

yeis of covariance

FIGURE CAPTIONS

Artificial data used to demonstrate that an analysis

covariance is not the same as an analysis of variance

the residual scores.

Artificial data generated with B=0 as an illustration

63

of

the effect of dependence between treatment and covariate.

Illustration of the principle of orthogonal regression.
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