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Linear regression models and feedforward neural network models based on back-propagation were
compared as to their abilit y to capture the relation between verbal descriptions of faces and physical
measures from the same faces. Feedforward network models were very successful in fitti ng the
original training exemplars but broke down under degraded input conditions, i.e., when noise was
added to the input or when part of the input data was missing. It was shown that this is mainly due
to the excessively large number of parameters in such models. It was also shown that this
breakdown could be avoided by adding a small amount of random noise to the input, thereby
preventing the model to tune itself to fine detail s of the input data. However, in all analyses the
neural network models were significantly less successful in their generali zation to new exemplars,
exemplars that had not been seen during training. Thus, generali zation seems to be an inherent
problem for such feedforward neural network models.

  Eyewitnesses to a crime often give a
verbal description of the face of the perpetrator.
Such a description is usually incomplete and
the detail s are often incorrect. Yet such
descriptions are important for judicial purposes
and may be used in two ways. First, such data
may be used to determine whether the
description matches one of more persons from
the police archives. Second, the descriptions are
sometimes used to construct a composite picture
or sketch of the criminal. For both purposes it
would be useful to have a system that would
help to transform the verbal description into a
set of physical measures of face characteristics,
e.g. measures for the relative size of the nose,
the forehead, etc. Such a set of physical
measures could then be used to search a
database of faces to find the best matches or to
construct a pictorial representation (e.g., to
determine the best-matching Photo-fit).

Making better use of the information
available in verbal descriptions of faces may
increase the effectiveness of such procedures.
There is some indication in the literature that
verbal descriptions of faces provide more
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information than Photo-fit reconstructions
(Christie & Elli s, 1981). Current procedures for
the construction of such pictures are notoriously
unreliable and not very effective. Elli s, Davies
and Sheperd (1978) showed that Photo-fit
composites made from memory were correctly
matched in only 1 out of 8 cases by an
independent group of subjects (chance level was
1 in 36). Even more disturbing is the finding
that the qualit y of the composite was unaffected
by whether or not the target face was or was not
visible during the reconstruction (Elli s, Davies
& Shepherd, 1978, Exp 2). A conclusion that
one might be tempted to draw from such
findings is that subjects are simply unable to
generate a good description of faces from
memory. Such a conclusion, however, does not
seem to be correct. Other research (Elli s,
Davies & Shepherd, 1978; Elli s, Shepherd &
Davies, 1975; Laughery & Fowler, 1980;
Shepherd & Elli s, 1973) shows that
performance is good when a recognition
measure instead of a recall measure is used.
Moreover, subjects are twice as good in
matching a verbal description to the target face
as a composite based on Photo-fit (Christie &
Elli s, 1981). Thus, verbal descriptions contain
more relevant information than is captured
using current techniques for the making of face
composites.

The latter finding was the starting point
for the current research. The finding shows that
subjects are better capable to form a mental
image of a face from a verbal description
provided by an eyewitness than on the basis of a
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Photo-fit composite that is constructed using
such a description. Apparently there is more
information in the descriptions than is currently
used. Somehow subjects are able to extract this
information from verbal descriptions in a way
that is not captured by current techniques for
constructing face composites. One important
problem, however, is that verbal descriptions
given by witnesses are often inaccurate and
incomplete. A system that uses such
descriptions should be quite robust to such
factors. It was assumed that a prediction model
based on neural networks might do better than
more conventional prediction -models. Neural
networks are generall y thought to perform well
under noisy conditions and/or missing data
(‘graceful degradation’) . In addition, neural
network or connectionist models have often
been assumed to be especiall y useful in
providing working solutions to diff icult and
poorly specified problems (e.g., Humphreys,
1993).  As a result, connectionist models have
been applied to many real-world problems,
including face recognition (Aleksander, 1983;
Stonham, 1986). Hence, in this analysis a set of
descriptive measures of faces will be used to
predict a set of physical measures for the same
faces using a standard neural network
approach. Since there is some discussion about
whether such network models are reall y
superior to more traditional methods, the
network model will be compared to a linear
regression model.

METHODS

Data were kindly made available by Dr.
John Shepherd of the University of Aberdeen
for a total of 350 faces. The data were a sample
from a larger database (Shepherd, 1986) and
consisted of descriptions and physical measures
from the faces of male persons. The database
from which these data were obtained was
constructed in such a way that the faces were
representative in terms of age distribution and
the presence of features such as beards,
mustaches and glasses for the population of
men that get into contact with the poli ce (for
more details, see Shepherd, 1986).

For each face, data were available for a
number of physical measures as well as
subjective descriptions. Appendix A li sts the
physical measures that were used. These 30
measures were based on previous research by
Jones, Hirschberg, Rothman and  Malpass

(1976) and Shepherd (1986). The technique
that was used, started out from the coordinates
of 37 points which were subsequently
transformed to the length and area
measurements described in Appendix A.

Appendix B li sts the subjective rating
scales that were used. Of these 50 measures, 4
were not used (viz., P43, P44, P45, en P47)
because these variables had littl e or no variance
in the set of 350 faces. In addition, variable P39
was omitted since it was completely dependent
on three other variables: P40, P41, and P42
(P39=0 if all of these are 0 and P39=1 in all
other cases). This leaves 45 descriptive
measures that were used as input variables in
the analyses. Each of these descriptive
measures (with the exception of the data
regarding height, weight and age) were
obtained by averaging the data of 10
independent raters. All of the 30 available
physical measures were used as output
variables, i.e. the variables that the models
should predict. The input data were rescaled to
values between 0 and 1 (this is for convenience
only and has no further consequences).

Of the 350 faces, 50 were reserved for a
test of generali zation performance. Of the
remaining 300, one case had missing data and
was omitted. Hence, a set of 299 faces was used
to train the network (to estimate the optimal
weights of the connections) and in the
regression analyses.

Two models were used: a regular linear
multiple regression model and a multiple-layer
feedforward network. The network model was
quite conventional. In addition to the 45 input
units and the 30 output units (the predicted
physical measures), there was a middle layer of
so-called hidden units. All of the input units
were connected to all of the hidden units and
these were full y connected to all of the output
units. There were two variants of the network:
one model (NN-15) had 15 hidden units and
the other model (NN-30) had 30 hidden units.

In addition, the output variables were rescaled1.
This is not trivial since the predicted values are
equal to the output of a sigmoid transfer
function. This function is approximately linear
around 0.5. These analyses were performed on
a UNIX workstation using the Rochester
Connectionist Simulator (RCS version 4.1)
developed by Goddard, Lynne and Mintz
(1988).

We tried two versions: in one case the
observed physical measures were rescaled
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between 0 and 1, in the second case they were
rescaled between 0.4 and 0.6. The latter variant
implies that the transfer function for the output
units is approximately linear (note that the
transfer function for the hidden units is still
nonlinear). Hence, 4 variants of a feedforward
network were tried:
- NN1-15: 15 hidden units, scaling between 0

and 1,
- NN1-30: 30 hidden units, scaling between 0

and 1,
- NN2-15: 15 hidden units, scaling between .4

and .6,
- NN2-30: 30 hidden units, scaling between .4

and .6.

RESULTS

A comparison was made between two
models for predicting the physical measures
from the subjective ratings. The first model was
a standard linear regression model. That is,
each of the 30 physical measures (Yk) was
described as a linear function of the 45 ratings
(Xj):

Y b b Xk k jk j k= + +∑0 ε (1)

The term ε k gives the deviation of the

predicted from the observed value of Yk. The
parameters b jk (j=0,…, 45) were estimated in

the conventional way using the method of least
squares.

This model was compared to a multiple-
layer feed-forward network model (see
Rumelhart, Hinton & Willi ams, 1986). In such
a model, the activation (predicted value) of an
output unit (variable) is a nonlinear function of
the activation of a number of hidden units
whose activation is a nonlinear function of the
input units:

H F w Xj ji i j= +∑( )α (2)

T F w Hk kj j k= +∑( )α (3)

where Tk is the predicted output, the wji are
weight parameters, αj and αk are additi ve
constants and F is the usual sigmoid transfer
function:

F x
x

( )
exp( )

=
+ −

1

1
(4)

The parameters of the network model (the
weights) were estimated using the back-
propagation or generali zed delta rule proposed
by Rumelhart, Hinton and Willi ams (1986). In

this procedure a method similar to the steepest
descent method is used to minimize the
deviation between the observed (Yk) and
predicted (Tk) output. During the training
phase, the set of 299 faces was repeatedly
presented to the network. Once the network had
reached an equili brium point (had more or less
converged), a new cycle was started using a
smaller learning parameter (delta). This
continued until no further improvement was
possible.

In the analysis of the results four aspects
were considered. First, it was investigated how
well the various models performed for the data
that were used in the training phase ("familiar
faces", the data that were used to estimate the
parameters of the models). Second, an analysis
was made of the performance when random
error is added to the input data (simulating
unreliabilit y). Third, the performance under
conditions of missing data was determined.
Finall y, for each of the models it was
investigated how well they performed when
presented with new faces.

PERFORMANCE FOR KNOWN FACES

The measure that was used for the
evaluation of the goodness-of-fit was based on
the squared differences between observed and
predicted values in comparison to the observed
variance. The measure, R2, is equal to the mean
percentage of the variance that can be
explained by the model and is comparable to a
squared product-moment correlation
coefficient:

[ ]R Y T Y Yjk jk jk k
2 2 2100 1= × −∑∑ − ∑∑ −( ) / ( ) (5)

where Yjk is the observed value on variable Yk

for face j, Tjk the corresponding predicted value
and Yk  the average observed value. In addition

the results were evaluated in terms of the
average Euclidean distance, D, between the
vector of the observed and predicted output
variables:

[ ]D Y T Njk jk= ∑ −∑ ( ) /2 (6)

where N is the number of faces in the data set.
D is equivalent to the measure that is
minimized to obtain the parameter estimates for
both the regression model and the back-
propagation model. It should be noted that this
measure is dependent on the scaling of the
output variables and hence not comparable
between the two scaling methods.
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The linear regression model gave a
reasonably good prediction R2=63.5 (the same
for both scaling variants). For the distance
measure D we found: D=553 for scaling
between 0 and 1 and D=110.7 for scaling
between 0.4 and 0.6. The observed solutions for
the network models however gave a better fit.
For NN1-15 we found: R2=70.0 (D=504) and
for NN1-30: R2=74.1 (D=470). The fact that R2

and D for NN1-30 are superior to those of
NN1-15 is understandable because the NN1-30
model has more free parameters. A similar
difference between the models with 30 and 15
hidden units was also observed for the output
scaling between 0.4 and 0.6. The NN2 models
gave a lesser fit, however, and were only
marginall y better than the corresponding linear
model. The NN2-15 model gave R2=63.9
(D=110.6) and the NN2-30 gave R2=69.9
(D=101.1).

The most important conclusion is that the
network model (especiall y the NN1-30 variant)
does much better than the regression model.
This is according to our expectation since the
network model is a more general model (it
handles both nonlinear as well as linear
relations).

-------------------------------------------
Insert Figures 1 and 1  about here

---------------------------------------------
We also looked at how well such a system

could be used to retrieve matching faces from a
database. This is of course a problem that is
very relevant for practical applications (e.g.
automated database systems for crime
investigations). For each face, the set of
predicted physical measures was compared to
each of the 299 faces. As a measure of
similarity (or rather dissimilarity) we used the
Euclidean distance between the vector of
observed values and the vector of predicted
values. We then computed the rank n for the
target face. Figures 1 and 2  give the probabilit y
that the target face is among the n best-
matching faces. Once again, the network model
and in particular the NN1-30 model does better
than the linear model.

PERFORMANCE UNDER "NOISE"

Traditionally, one of the reasons for
advocating the use of neural networks has been
their tolerance to moderate amounts of error in
the input data (this property is often referred to

as ‘graceful degradation’) . The claimed
superiority of network models in the handling
of error was also the primary reason for
conducting the present analyses (verbal
descriptions of faces may be assumed to be
especiall y error-prone). In order to test this
aspect, we added a varying amount of
uniformly distributed random error to the input
data. The amount was varied over a large
range, viz. between .05 and .65 (remember that
the input data were rescaled to lie between 0
and 1). More precisely, for a range of, say, .25 a
random number was chosen between -.125 and
+.125 and this was added to the original value.
The new input values were confined to the
original range, i.e. when adding noise would
lead to a value of -.2, this value was set to 0.
These new values were then used to compute
predicted output values. Figures 3 and 4 give
the results.

-------------------------------------------
Insert Figures 3 and 4  about here

---------------------------------------------
Contrary to our expectations, the network

models do not perform very well under these
conditions of noisy input. The traditional li near
model appears to be much less sensiti ve to such
disturbances than the network model.
Moreover, there seems to be a negative relation
between performance for the original data and
the performance under noise: The NN1-30
model did best for the original data but shows
the greatest decline when random error is
added to the input. One reason for this lack of
robustness might be that the superior
performance of the network model for the
original data is largely due to the extremely
large number of parameters (weights) in this
model: the network model with 30 hidden units
has 2310 parameters, whereas the linear model
has 'only' 1380 free parameters. The difference
between the NN1 and the NN2 models suggests
that the greater flexibilit y of the NN1 models
resulting from the nonlinearity for the output
units leads to a better fit for the original data
but leads to worse performance under noise.

PERFORMANCE WITH MISSING DATA

In this analysis we investigated the effects
of missing data. This is another aspect for
which network models are usually thought to be
superior to more traditional models. In the
present analyses, missing values were replaced
by the mean value for that parameter (this is a
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rather crude and not very intelli gent way of
handling missing data; however, it suff ices for
this exploratory study). In this manner 20% of
the input data were replaced.

Somewhat surprisingly, in this analysis
the network model again did not perform as
well as the linear model. For scaling between 0
and 1, the results (in terms of the percentage of
variance explained) were: linear: R2=50.5;
NN1-15: R2=37.9; NN1-30: R2=36.5. For
scaling between .4 and .6 the results were:
li near: R2=50.5; NN2-15: R2=51.8; NN2-30:
R2=50.8. Once again, it is the NN1-30 model
that performs worst. And once again, there
seems to be a negative relation between
performance for the original data and the
performance with missing values.

GENERALIZATION TO NEW FACES

All of the models were also tested on a
new set of 50 faces that had not been used
previously, i.e. these data were not used during
the training phase. Once again, the
performance of the linear model was better than
that of the network model (especiall y NN1-30).
For scaling between 0 and 1 the results were:
li near: R2=42.6; NN1-15: R2=16.7; NN1-30:
R2=4.0. For scaling between .4 and .6 the
results were: linear: R2=42.9; NN2-15:
R2=38.1; NN2-30: R2=23.5. Thus, the network
model does not generali ze nearly as well as the
linear model. Note also that the performance of
the NN1-30 model on this test of generali zation
is not just inferior to the linear model but also
quite poor in absolute terms.

DISCUSSION

There are two main conclusions. First, the
use of a neural network model based on back-
propagation leads to better predictions for the
original data compared to a conventional li near
regression model. However, contrary to
expectations, such a model did not lead to
better performance under more criti cal
conditions, i.e. when noise was added to the
input or when tested with missing data. In
addition, the back-propagation model
generali zes less well than the linear model to a
new set of input data. Although it has
sometimes been claimed that the back-
propagation model has excellent generali zation

properties (e.g. NETtalk, see Sejnowski &
Rosenberg, 1987), it has been previously
demonstrated that the generali zation
capabiliti es of back-propagation can be
considerably improved by imposing a hidden
layer bottleneck, i.e. a layer with relatively
fewer units than previous layers (see Kruschke,
1989a,b). This suggests that the generali zation
problems might be related to the versatilit y of
the back-propagation model.

In order to better understand why the
back-propagation model did not perform as
well as the linear model except on the original
data, it is helpful to consider the number of
parameters that were estimated for each of
these models. For the linear model 1380 free
parameters (=30*46) were estimated from the
data, for the NN15 models the number of
estimated parameters was 1170 (=15*46 +
30*16), while the NN30 models had 2310
estimated parameters (=30*46 + 30*31). Such
a large number of parameters relative to the
number of data points may lead to inflated
estimates of the extent to which the model
accurately accounts for the data. As was
recently shown by Myung (1998), there is a
general inverse relation between model
complexity and generali zabilit y. A model with
many free parameters will fit a given data set
better but will generali ze more poorly to new
data sets.

Similar problems are of course well
known in the standard regression analysis and
have led to the use of adjusted R2 coeff icients.
In the present analyses there is indeed a
negative relationship between the goodness-of-
fit to the original data and the extent to which
the model generali zes adequately to more
demanding situations. Apparently, the
relatively good fit to the training data is
obtained by adjustment of the model parameters
to minor and case-specific detail s of the data.
Hence, the more freedom a model has to adjust
its predictions, the greater the danger of over-
fitting the data.

This aspect may explain why the NN-30
models did more poorly on the generali zation
test than the linear model. The above argument
may be extended to account for the performance
of the NN1-15 model relative to the linear
model. As shown above, there is not much
difference in the number of parameters in these
models. Why then does the NN1-15 model
perform worse on the generali zation test than
the linear model? We believe that this is due to
the fact that the NN1-15 model is a more
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flexible model than the linear model. That is,
there is no restriction in the NN1-15 model to a
particular function relating input to output.

The same reasoning might also account
for the superior performance of the NN1-30
model compared to the NN2-30 model: in the
latter case the transfer function that maps the
hidden units to the output units is more or less
restricted to a linear function (since the output
values are restricted to the range 0.4-0.6). As in
the analysis of Kruschke (1989b), this
restriction appears to be beneficial to the
generali zation capabiliti es of the back-
propagation model.

The rather poor performance of the back-
propagation model in generali zation is not a
novel finding. Although often claimed
otherwise, even the widely publicized NETtalk
model (Sejnowski & Rosenberg, 1986) shows
the same phenomenon. NETtalk has 203 input
units, 80 hidden units and 26 output units,
hence a total of 18426 parameters. NETtalk
was trained on a set of 1024 words where it
attained a score of 95% percent correct (for
individual phonemes). When tested on a novel
set of words, performance dropped to 78%
correct (in terms of correct performance for
whole words the results are even clearer: a drop
from about 75% correct to about 15%).
Although I am not aware of any data that
looked at the performance of NETtalk with
missing or noisy input, these results suggest
that it is li kely that that model will also not
perform well on these tasks.

Hence we may conclude that the back-
propagation model suffers from ‘overfitting’
and that its apparent superiority to more
traditional regression techniques may be partly
due to the extremely large number of
parameters in such neural network models.

PERFORMANCE AFTER TRAINING WITH NOISY

DATA

In order to get a more reali stic estimate of
the adequacy of the back-propagation model,
some method has to be used to eliminate the
problem that the model is simply capturing part
of the error variance. One possibilit y is to train
the model not on the original data but on sets of
data obtained by adding a small amount of error
variance to the original data. Thus, in the next
analyses we trained the model not on the
original data but on sets of data obtained by
adding of uniformly distributed random error to

the original data. To be more precise, on each
training trial and for each input variable, a
random number was chosen from a uniform
distribution in the range (-.075, +.075). This
number was then added to the original input
value, again using the restriction that the
resulting values should remain within the range
[0,1]. This was done independently for each
case (each face). Since new random values were
used on each run through the whole sequence of
faces, this procedure makes it impossible for the
network model to adjust itself to minor
variations of the input data. The resulting
parameter estimates should then be more robust
to noise and hopefull y generali ze better to new,
not-seen-before, data. Since the problem was
most evident in the NN1-models, these new
analyses were only performed in for the NN1-
15 and NN1-30 models (scaling of output units
between 0 and 1).

For the linear regression model a similar
procedure was used. However, since it is not
possible to analyze unlimited numbers of input
data, in this case ten data sets were generated
using the method described above. The
parameter estimates were obtained by
submitting the combined data to one overall
regression analysis. Hence, the resulting data
set consisted of a total of 2990 cases.

After the parameter estimates had been
obtained, the resulting models were applied to
the original (error free) data. In addition, all of
the analyses discussed previously were repeated
(i.e., performance under noise and with missing
data, and the generalization test).

As one might have expected, the results
for the linear regression model were
comparable to those obtained previously. For
the original errorless data, the percentage of
variance explained was R2=63.0 (D =557).
Interestingly, the network models still gave a
better fit. For NN1-15 we found: R2=67.1
(D=528) and for NN1-30: R2=73.0 (D=478).

-------------------------------------------
Insert Figures 5 and 6  about here

---------------------------------------------
Next, we looked at how well the models

could be used to retrieve matching faces from a
database. As before, we computed for each set
of predicted physical measures the similarity to
each of the 299 faces and computed the rank for
the target face. The results are shown in Figure
5 where the probabilit y is given that the target
face is among the n best-matching faces. Once
again, the network model and in particular the
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NN1-30 model does better than the linear
model.

These results show that the addition of a
small amount of random noise to the input has
not seriously affected the abilit y of the models
to correctly predict the physical measures from
the verbal descriptions. However, the most
important issue is whether such a procedure
helps to eliminate the rather poor performance
of the network model when the input is
degraded. As before, we computed  for all three
models the abilit y to predict the output when a
varying amount of random noise is added to the
input. Figure 6 shows the percentage of
explained variance of the output measures as a
function of the amount of noise added. Clearly,
the abilit y of the network models to cope with
such degraded input has been greatly improved
as can be seen by comparing Figure 6 to Figure
3. Interestingly, the regression model also
performs better, especiall y when the amount of
noise is relatively large. However, these results
also show that under such conditions all three
models converge to the same performance.
Hence, these results show that the procedure
that was used to obtain more robust parameter
estimates was indeed successful but that there
does not seem to be anything special about the
abilit y of the network models to handle
degraded input.

A similar conclusion is obtained from the
analysis in which 20% of the input data were
replaced by their mean values (simulating the
effect of missing data). The results (again in
terms of the percentage of variance explained)
were: linear: R2=51.5; NN1-15: R2=51.0; NN1-
30: R2=52.6. All models perform about equally
well and better (especiall y the network models)
than in the original analysis.

How about the capabilit y of the models to
generali ze to new stimuli not seen before? We
tested the performance of the three models on
the same set of 50 faces that was used in the
previous test of generali zation. The results
were: linear: R2=43.1; NN1-15: R2=30.6; NN1-
30: R2=27.1. Thus, although the generali zation
performance of the network models is greatly
improved, it is still i nferior to that of the
regression model. It should be noted that this is
the only performance test that is not in some
sense based on the original training data.
Hence, it might be that the back-propagation
model still has some generali zation problems
due to the fact that it is inherently more
flexible. Whether or not this result is specific to
the present example (faces may be a class of

stimuli that are indeed best described by linear
functions, see Abdi et al., 1995), is something
that has to be clarified in future research.

GENERAL DISCUSSION AND CONCLUSIONS

The results reported in this paper clearly
show that back-propagation models do not have
a special abilit y to handle noisy data. Although
these models were able to learn complex
mappings between input and output data, this
abilit y does not imply that such models will
also perform well under more stringent
conditions. Thus, in the present analyses, the
network model broke down when noise was
added to the input. This was especiall y true for
the model with a relatively large number of
hidden units.  Although this model gave a
superior fit when applied to the data on which
it was originall y trained, it performed quite
poorly when random error was added to the
input. It also performed worse than the
regression model when part of the input data
was replaced by missing data. Hence, contrary
to what is frequently claimed, the back-
propagation model does not seem to have a
special ability for ‘graceful degradation’.

We believe that the rather poor
performance of the back-propagation model
under degraded conditions is due to the
flexibilit y and especiall y the extremely large
number of parameters in these models. This
enables such models to tune themselves to
specific characteristics of individual training
stimuli , characteristics that are not predictive
for other exemplars within the same set. This
property leads to very good predictions for the
set of stimuli on which the model is trained
(those stimuli that are used to estimate the
parameters of the model) but also to the poor
performance when such stimuli are slightly
altered, for example by adding random noise.

In order to prevent this, either the size of
the training set has to be increased or some
other means must be used to force the model to
focus on the most important relations between
the input and output variables. One way to
achieve this is to decrease the number of hidden
units. Thus, we showed that reducing the
number of hidden units from 30 to 15,
decreases performance on the training
exemplars but increases the performance when
the input is degraded. An alternative method
that seems to be more promising is to add a
small amount of random noise to the input data.
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As we showed in the final analyses, this does
not affect the performance on the training set
but greatly improves performance under
degraded conditions. In the present case, the
performance of all models (regression as well
as back-propagation) converged to the same
level as the amount of added noise was
increased. Interestingly, all models benefited
from this method, although the advantage was
most significant for the back-propagation
model with the larger number of hidden units.

The present finding that regression
models perform at least as well as feed-forward
neural network models, might be criti cized as
being specific for the current application. Thus,
one might assume that the present application
just happens to involve more or less linear
relations between the input and output variables
and hence it is not surprising that the linear
regression model outperforms the neural
network models. However, if this was indeed
the case, then why should the neural network
models perform better than the regression
model on the original training set? It should
also be noted that such back-propagation
models have been claimed to be able to handle
any type of relationship, hence they should not
have any diff iculties with a simple linear
relationship.

A second interesting comparison between
the regression model and the back-propagation
model involves the extent to which the models
capture the underlying relations so as to be able
to generali ze to new instances. It turns out that
the regression model is definitely superior with
respect to generali zation. Interestingly, the
rather poor generali zation performance of the
back-propagation model remains even when the
model is trained on noisy input. Hence, whereas
the poor performance on degraded input seems
to be mainly due to the large number of
parameters, the poor generali zation seems to be
due to other factors that cannot be so easil y
rectified.

All i n all then, we arrive at the rather
sobering conclusion that feedforward neural
network models are not as successful as they
seem to be when one only considers the extent
to which the model is able to make correct
predictions for the set of exemplars on which it
was trained. Although such comparisons are
not usually made, traditional regression models
may in fact outperform the network models, at
least when one takes into account such aspects
as the ability to generalize to new data.
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NOTES

1 Rescaling of the output variables is necessary
because the network model (i.e. the sigmoid
transfer function) produces values between 0 and 1
at the output units.

APPENDIX A:  PHYSICAL MEASURES

In the data collected by Shepherd (see
Shepherd, 1986) photographs were used of a
large number of faces (frontal view). For each
face the exact (relative) location of 37 pre-
defined points was measured (e.g., midpoint of
hairline, midpoint of upper lip). On the basis of
these points 30 derived measures were defined.
These 30 measures were used in the present
research as the to-be-predicted physical
measures. They may be grouped in three
categories:

DISTANCE MEASURES
M1 inter ocular distance
M2 forehead height
M3 nose length
M4 mouth width
M5 upper lip thickness
M6 lower lip thickness
M7 chin height
M8 face height
M9 face width at brow
M10 face width at cheek
M11 face width at mouth
M12 face width at chin
M13 eyebrow height
M14 eyebrow width
M15 eyebrow setting
M16 hair length
M17 nose width at bridge
M18 eye narrowness

AREA MEASURES
M19 face area
M20 hair area
M21 eye area
M22 chin area
M23 mouth area
M24 nose area

RATIO MEASURES
M25 eye:face ratio(M21/M19)
M26 mouth:face ratio(M23/M19)
M27 nose:face ratio(M24/M19)

M28 hair:face ratio(M20/M19)
M29 chin:face ratio(M22/M19)
M30 face height:width ratio (M8/M10)

APPENDIX B:  RATING SCALES

The dataset that was available consisted of 50
ratings (means based of 10 raters). Most ratings
(P1-P38) were obtained using 5-point rating
scales. Parameters 39-47 were scored
dichotomously. (0=no, 1=yes). The remaining 3
parameters (P48-P50) consisted of height,
weight, and age. Of these 50 parameters 5 were
not used in the analyses, viz. P39, P43, P44,
P45, and P47.

SHAPE OF THE FACE
P1: short-long
P2: narrow-broad
P3: bony-fleshy

COMPLEXION
P4: fair-dark
P5: pale-florid
P6: unlined-lined
P7: clear-blemished

HAIR
P8: short-long
P9: tidy-untidy
P10: straight-curly
P11: bald-full head
P12: no grey-white
P13: black-brown-red-fair-blond

FOREHEAD
P14: low-high
P15: narrow-broad
P16: straight-sloping

EYEBROWS
P17. thin-thick
P18. straight-bent
P19. meet in the middle-set far apart
P20. low-high

EYES
P21. small-large
P22. narrowed-open
P23. close set-wide spaced
P24. deep set-protruding
P25. blue-grey-green-hazel-brown.

EARS
P26. small-large

NOSE
P27. small-large
P28. short-long
P29. narrow-broad
P30. concave-hooked
P31. small nostrils-large nostrils
P32. narrow tip-broad tip.

MOUTH
P33. small-large
P34. thin upper lip-thick upper lip
P35. thin lower lip-thick upper lip
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CHIN
P36. small-large
P37. pointed-square
P38. receding-jutting

FACIAL HAIR
P39. none at all
P40. mustache
P41. sideburns
P42. beard

PHYSICAL PECULIARITIES.
P43. squint
P44. bags under eyes
P45. scars

ACCESSORIES
P46. glasses
P47. earring
OTHER
P48. height
P49. weight
P50. age
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Figure 1. Probability that the target is among the n best-matching faces (scaling between 0 and 1).
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Figure 2.  Probability that the target is among the n best-matching faces (scaling between 0.4 and 0.6).



Neural Networks and Regression     12

0

20

40

60

80

100

0 0.05 0.15 0.25 0.35 0.45 0.55 0.65

noise

p
er

ce
n

ta
g

e 
va

ri
an

ce
 e

xp
la

in
ed

lin
nn15
nn30

Figure 3.  Percentage variance explained as a function of the amount of noise added to the input (scaling
between 0 and 1).
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Figure 4  Percentage variance explained as a function of the amount of noise added to the input (scaling
between 0.4 and 0.6).
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Figure 5 Probability that the target is among the n best-matching faces (training using noisy input).
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Figure 6   Percentage variance explained as a function of the amount of noise added to the input
(training using noisy input).


