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Linea regresson models and feedforward neural network models based on back-propagation were
compared as to their ability to capture the relation between verbal descriptions of faces and ptysical
measures from the same faces. Feadforward network models were very succesdul in fitting the
original training exemplars but broke down under degraded inpu conditions, i.e., when noise was
added to the input or when part of the input data was missng. It was own that this is mainly due
to the excesgvely large number of parameters in such models. It was also shown that this
brea&kdown could be aroided by adding a small amount of random noise to the inpu, thereby
preventing the model to tune itself to fine detail s of the input data. However, in all analyses the
neural network models were significantly less siccessul in their generalization to hew exemplars,
exemplars that had not been seen duing training. Thus, generdlization seans to be an inherent
problem for suclieedforward neural network models.

Eyewitnesss to a crime often give a
verbal description of the face of the perpetrator.
Such a description is usualy incomplete and
the details are often incorred. Yet such
descriptions are important for judicial purposes
and may be used in two ways. First, such data
may be used to determine whether the
description matches one of more persons from
the poli cearchives. Seand, the descriptions are
sometimes used to construct a composite picture
or sketch of the aiminal. For bath purposes it
would be useful to have a system that would
help to transform the verbal description into a
set of physical measures of face daracteristics,
e.g. measures for the relative size of the nose,
the forehead, etc. Such a set of physica
measures could then be used to search a
database of faces to find the best matches or to
construct a pictorial representation (e.g., to
determine the best-matching Photo-fit).

Making better use of the information
available in verbal descriptions of faces may
increase the dfediveness of such procedures.
There is ©me indication in the literature that
verbal descriptions of faces provide more
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information than Photo-fit recnstructions
(Christie & Ellis, 1981). Current procedures for
the @nstruction of such pictures are notorioudy
unreliable and not very effedive. Ellis, Davies
and Sheperd (1978 showed that Photo-fit
composites made from memory were crredly
matched in only 1 out of 8 cases by an
independent group of subjeds (chanceleve was
1in 36). Even more disturbing is the finding
that the quality of the cmmposite was unaffeded
by whether or not the target face was or was not
visible during the recnstruction (Elli s, Davies
& Shepherd, 1978 Exp 2). A conclusion that
one might be tempted to draw from such
findings is that subjeds are smply unable to
generate a good description of faces from
memory. Such a conclusion, however, does not
seem to be wrred. Other research (Ellis,
Davies & Shepherd, 1978 Ellis, Shepherd &
Davies, 1975 Laughery & Fowler, 198Q
Shepherd &  Ellis, 1973 shows that
performance is good when a reagnition
measure instead of a reall measure is used.
Moreover, subjeds are twice as good in
matching a verbal description to the target face
as a composite based on Photo-fit (Christie &
Ellis, 1981). Thus, verbal descriptions contain
more relevant information than is captured
using current techniques for the making of face
composites.

The latter finding was the starting point
for the aurrent research. The finding shows that
subjeds are better capable to form a mental
image of a face from a verbal description
provided by an eyewitnessthan on the basis of a



Photo-fit composite that is constructed using
such a description. Apparently there is more
information in the descriptions than is currently
used. Somehow subjeds are able to extract this
information from verbal descriptions in a way
that is not captured by current techniques for
congtructing face @mposites. One important
problem, however, is that verbal descriptions
given by witnesses are often inaccurate and
incomplete. A system that uses such
descriptions should be quite robust to such
factors. It was assumed that a prediction model
based on neural networks might do better than
more mnventional prediction -modds. Neural
networks are generally thought to perform well
under noisy conditions and/or missng data
(‘gracdul degradation’). In addition, neural
network or connedionist models have often
been asaimed to be epedaly useful in
providing working solutions to difficult and
poaly spedfied probems (eg., Humphreys,
1993. As a result, connedionist modds have
been applied to many real-world problems,
including face reagnition (Aleksander, 1983
Stonham, 1986. Hence in thisanalysis a set of
descriptive measures of faces will be used to
predict a set of physical measures for the same
faces using a sandard neural network
approach. Sincethere is ssme discusson about
whether such network models are realy
superior to more traditional methods, the
network model will be mmpared to a linear
regression model.

METHODS

Data were kindly made available by Dr.
John Shepherd of the University of Aberdeen
for atotal of 350faces. The data were a sample
from a larger database (Shepherd, 1986 and
consisted of descriptions and physical measures
from the faces of male persons. The database
from which these data were obtained was
constructed in such a way that the faces were
representative in terms of age distribution and
the presence of features sich as beards,
mustaches and dgasses for the population of
men that get into contact with the police (for
more details, see Shepherd, 1986).

For each face data were available for a
number of physical measures as wel as
subjedive descriptions. Appendix A lists the
physical measures that were used. These 30
measures were based on previous research by
Jones, Hirschberg, Rothman and Malpass
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(1976 and Shepherd (1986. The technique
that was used, started out from the cordinates
of 37 points which were subsequently
transformed to the length and area
measurements described in Appendix A.

Appendix B lists the subjedive rating
scales that were used. Of these 50 measures, 4
were not used (viz., P43, P44, P45, en PA7)
because these variables had littl e or no variance
in the set of 350faces. In addition, variable P39
was omitted since it was completely dependent
on three other variables. P40, P41, and P42
(P39=0 if all of these are 0 and P39=1 in all
other cases). This leaves 45 descriptive
measures that were used as input variables in
the analyses. Each of these descriptive
measures (with the eception of the data
regarding height, weight and age) were
ohltained by averaging the data of 10
independent raters. All of the 30 available
physicak measures were used as output
variables, i.e. the variables that the modes
should predict. The input data were rescaled to
values between 0 and 1 (thisis for convenience
only and has no further consequences).

Of the 350 faces, 50 were reserved for a
test of generalizaion performance Of the
remaining 30Q one case had missng data and
was omitted. Hence a set of 299 faces was used
to train the network (to estimate the optimal
weights of the nnedions) and in the
regression analyses.

Two models were used: a regular linear
multiple regresson model and a multi ple-layer
feedforward network. The network model was
quite mnventional. In addition to the 45 input
units and the 30 output units (the predicted
physical measures), there was a midde layer of
so-called hidden units. All of the input units
were @mnneded to al of the hidden units and
these were fully conneded to al of the output
units. There were two veriants of the network:
one modd (NN-15) had 15 hidden units and
the other model (NN-30) had 30 hidden units.

In additi on, the output variables were rescal edl.
Thisisnot trivial sincethe predicted values are
equal to the output of a sigmoid transfer
function. This function is approximatdy linear
around 0.5. These analyses were performed on
a UNIX workstation using the Rochester
Connedionist Simulator (RCS version 4.1)
devdoped by Goddard, Lynne and Mintz
(1988).

We tried two versions. in one @se the
observed physical measures were rescaled



between 0 and 1, in the second case they were

rescaled between 0.4 and 0.6. The latter variant

implies that the transfer function for the output

units is approximately linear (note that the

transfer function for the hidden units is gill

nonlinear). Hence 4 variants of a feadforward

network were tried:

- NN1-15; 15 hidden units, scaling between 0
and 1,

- NN1-30: 30 hidden units, scaling between 0
and 1,

- NN2-15; 15 hidden units, scaling between .4
and .6,

- NN2-30: 30 hidden units, scaling between .4
and .6.

RESULTS

A comparison was made between two
models for predicting the physical measures
from the subjedive ratings. The first model was
a standard linear regresson model. That is,
each of the 30 physica measures (Y,) was
described as a linear function of the 45 ratings
(X):

Yk:b0k+zbjkxj+8k )

The term €, gives the deviation of the
predicted from the observed value of Y,. The
parameters by, (j=0,..., 45) were etimated in

the onventional way using the method of least
squares.

This modd was compared to a multiple-
layer fead-forward network mode (see
Rumeéhart, Hinton & Willi ams, 1986). In such
a moded, the activation (predicted value) of an
output unit (variable) is a nonlinear function of
the activation of a number of hidden units
whose activation is a nonlinear function of the
input units:

Hi=F(Q w; X +a)) )

Tk:F(ZijHj +0,) (©)
where Ty is the predicted output, the w; are
weight parameters, a; and a, are addtive
constants and F is the usual sigmoid transfer
function:

1

F(X)=———¢

() 1+ exp(—x)

The parameters of the network model (the
weights) were etimated uwsing the back-
propagation or generalized dedlta rule proposed
by Rumehart, Hinton and Williams (1986. In

(4)
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this procedure a method similar to the stegoest
descent method is used to minimize the
deviation between the observed (Y, and
predicted (T,) output. During the training
phase, the set of 299 faces was repeatedly
presented to the network. Once the network had
reached an equili brium point (had more or less
converged), a new cycle was garted using a
smaler learning parameter (delta). This
continued wntil no further improvement was
possible.

In the analysis of the results four aspeds
were onsidered. First, it was investigated how
well the various models performed for the data
that were used in the training phase ("familiar
faces', the data that were used to estimate the
parameters of the models). Sewond, an analysis
was made of the performance when random
eror is added to the input data (smulating
unreliability). Third, the performance under
conditions of missng data was determined.
Finally, for each of the modds it was
investigated how well they performed when
presented with new faces.

PERFORMANCE FOR KNOWN FACES

The measure that was used for the
evaluation of the goodnessof-fit was based on
the squared dfferences between observed and
predicted values in comparison to the observed
variance The measure, R?, is equal to the mean
percentage of the variance that can be
explained by the model and is comparable to a
squared product-moment correlation
coefficient:

R =10041-3 (%~ T/ 3% ~Y)’| )

where Yj is the observed value on variable Yy
for facej, Tj« the wrresponding predicted value
and Y, the average observed value. In addition

the results were evaluated in terms of the
average Euclidean distance D, between the
vedor of the observed and predicted output
variables:

=Y [[5M-TIN  ®
where N is the number of faces in the data set.
D is equivaent to the measure that is
minimized to oltain the parameter estimates for
bath the regresson model and the back-
propagation model. It should be noted that this
measure is dependent on the scaling of the
output variables and hence not comparable
between the two scaling methods.



The linear regresson model gave a
reasonably good prediction R*=63.5 (the same
for bath scaling variants). For the distance
measure D we found: D=553 for scaling
between 0 and 1 and D=1107 for scaling
between 0.4 and 0.6. The observed solutions for
the network modds however gave a better fit.
For NN1-15 we found: R*=70.0 (D=504) and
for NN1-30: R*=74.1 (D=470). The fact that R?
and D for NN1-30 are superior to those of
NN1-15 is understandable because the NN1-30
model has more free parameters. A similar
difference between the models with 30 and 15
hidden units was also otserved for the output
scaling between 0.4 and 0.6. The NN2 models
gave a leser fit, however, and were only
marginally better than the wrresponding linear
model. The NN2-15 model gave R*=63.9
(D=1106) and the NN2-30 cave R*=69.9
(D=101.1).

The most important conclusion is that the
network modd (espedally the NN1-30 variant)
does much better than the regresson model.
This is acocording to aur expedation since the
network model is a more general modd (it
handles bath nonlinear as well as linear
relations).

Insert Figures 1 and 1 about here

We also looked at how well such a system
could be used to retrieve matching faces from a
database. This is of course a probem that is
very relevant for practical applications (e.g.
automated database systems for crime
investigations). For each face the sat of
predicted physical measures was compared to
each of the 299 faces. As a measure of
similarity (or rather dissmilarity) we used the
Euclidean distance between the vedor of
observed values and the vedor of predicted
values. We then computed the rank n for the
target face Figures1 and 2 gve the probability
that the target face is among the n best-
matching faces. Once again, the network model
and in particular the NN1-30 model does better
than the linear model.

PERFORMANCE UNDER " NOISE"

Traditionally, one of the reasons for
advocating the use of neural networks has been
their tolerance to moderate amounts of error in
the input data (this property is often referred to
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as ‘graceful degradation’). The daimed
superiority of network models in the handling
of error was also the primary reason for
conducting the present anayses (verbal
descriptions of faces may be asaumed to be
espedally error-prone). In order to test this
asped, we added a varying amount of
uniformly distributed random error to the input
data. The amount was varied over a large
range, viz. between .05 and .65 (remember that
the input data were rescaled to lie between 0
and 1). More predsdly, for arange of, say, .25a
random number was chosen between -.125 and
+.125and this was added to the original value.
The new input values were mnfined to the
original range, i.e. when adding noise would
lead to a value of -.2, this value was st to 0.
These new values were then used to compute
predicted output values. Figures 3 and 4 gve
the results.

Insert Figures 3 and 4 about here

Contrary to aur expedations, the network
models do not perform very well under these
conditions of noisy input. The traditional li near
model appears to be much less gnsitive to such
disturbances than the network modd.
Moreover, there seams to ke a negative relation
between performance for the original data and
the performance under noises The NN1-30
model did best for the original data but shows
the greatest dedine when random error is
added to the input. One reason for this lack of
robustness might be that the superior
performance of the network modd for the
original data is largely due to the etremey
large number of parameters (weights) in this
modedl: the network model with 30 hidden units
has 2310 @mrameters, whereas the linear model
has 'only' 1380free parameters. The difference
between the NN1 and the NN2 modds suggests
that the greater flexibility of the NN1 models
resulting from the nonlinearity for the output
units leads to a better fit for the original data
but leads to worse performance under noise.

PERFORMANCE WITH MISSING DATA

In this analysis we investigated the dfeds
of missng data. This is another asped for
which network models are usually thought to be
superior to more traditional models. In the
present analyses, missng values were replaced
by the mean value for that parameter (thisis a



rather crude and not very intelligent way of
handling missng data; however, it suffices for
this exploratory study). In this manner 20% of
the input data were replaced.

Somewhat surprisingly, in this analysis
the network modd again did not perform as
well as the linear model. For scaling between 0
and 1, theresults (in terms of the percentage of
variance eplained) were: linear: R’=50.5;
NN1-15 R’=37.9; NN1-30. R°=36.5. For
scaling between .4 and .6 the results were
linear: RP=50.5; NN2-15. R’=51.8; NN2-30:
R?=50.8. Once again, it is the NN1-30 mode
that performs worst. And once again, there
seams to ke a negative relation between
performance for the origina data and the
performance with missing values.

GENERALIZATION TO NEW FACES

All of the models were aso tested on a
new set of 50 faces that had not been used
previoudly, i.e. these data were not used duing
the training phase. Once again, the
performance of the linear model was better than
that of the network model (espedally NN1-30).
For scaling between 0 and 1 the results were:
linear: RP=42.6; NN1-15 R’=16.7; NN1-30:
R?=4.0. For scaling between .4 and .6 the
results were: linear: R?=429; NN2-15
R?=38.1; NN2-30: R*=23.5. Thus, the network
model does not generalize nearly as well as the
linear model. Note also that the performance of
the NN1-30 model on this test of generalization
is not just inferior to the linear model but also
quite poor in absolute terms.

DiscussioN

There are two main conclusions. First, the
use of a neural network model based on back-
propagation leads to better predictions for the
original data compared to a conventional li near
regresson modd. However, contrary to
expedations, such a model did not lead to
better performance under more aitical
conditions, i.e. when noise was added to the
input or when tested with missng data. In
addition, the  back-propagation  mode
generali zes lesswell than the linear model to a
new set of input data. Although it has
sometimes been claimed that the back-
propagation model has excdlent generalization
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properties (e.g. NETtalk, see Sgnowski &
Rosenberg, 1987, it has been previoudy
demonstrated that the  generalizaion
capabilities of back-propagation can be
considerably improved by imposing a hidden
layer batlened, i.e. a layer with relatively
fewer units than previous layers (see Kruschke,
198%,h). This suggests that the generalization
problems might be related to the versatility of
the back-propagation model.

In order to better understand why the
back-propagation model did not perform as
well as the linear modedl except on the original
data, it is helpful to consider the number of
parameters that were etimated for each of
these models. For the linear model 1380 free
parameters (=30*46) were estimated from the
data, for the NN15 models the number of
estimated parameters was 1170 (=15*46 +
30*16), while the NN30 models had 2310
estimated parameters (=30*46 + 30*31). Such
a large number of parameters relative to the
number of data points may lead to inflated
estimates of the etent to which the model
acauratedy accounts for the data. As was
recently shown by Myung (1998, there is a
general inverse relation between mode
complexity and generalizability. A modd with
many free parameters will fit a given data set
better but will generalize more poorly to new
data sets.

Similar problems are of course well
known in the standard regresson analysis and
have led to the use of adjusted R? coefficients.
In the present analyses there is indeal a
negative relationship between the goodnessof-
fit to the original data and the extent to which
the mode generalizes adequately to more
demanding stuations.  Apparently, the
relatively good fit to the training data is
ohtained by adjustment of the model parameters
to minor and case-spedfic detail s of the data.
Hence the more freedom a modd has to adjust
its predictions, the greater the danger of over-
fitting the data.

This asped may explain why the NN-30
models did more poarly on the generalization
test than the linear model. The abowve argument
may be extended to acoount for the performance
of the NN1-15 mode rédative to the linear
modd. As down abowe, there is not much
differencein the number of parametersin these
models. Why then does the NN1-15 model
perform worse on the generalizaion test than
the linear model? Webelieve that thisis due to
the fact that the NN1-15 mode is a more



flexible model than the linear model. That is,
thereis no restriction in the NN1-15 model to a
particular function relating input to output.

The same reasoning might also acoount
for the superior performance of the NN1-30
model compared to the NN2-30 moddl: in the
latter case the transfer function that maps the
hidden units to the output units is more or less
restricted to a linear function (since the output
values are restricted to the range 0.4-0.6). Asin
the anaysis of Kruschke (198%), this
restriction appears to be beneficia to the
generdlizaion capabilities of the back-
propagation model.

The rather poar performance of the back-
propagation model in generalizaion is not a
novel finding. Although often clamed
otherwise, even the widdly publicized NETtalk
model (Sgnowski & Rosenberg, 1986 shows
the same phenomenon. NETtalk has 203 input
units, 80 hidden units and 26 output units,
hence a total of 18426 @rameters. NETtalk
was trained on a set of 1024 words where it
attained a score of 95% percent corred (for
individual phonemes). When tested on a novel
sat of words, performance dropped to 78%
corred (in terms of correa performance for
whole words the results are even clearer: adrop
from about 75% corred to about 15%).
Although | am not aware of any data that
looked at the performance of NETtalk with
missng or noisy input, these results suggest
that it is likely that that model will also not
perform well on these tasks.

Hence we may conclude that the back-
propagation modd suffers from ‘overfitting’
and that its apparent superiority to more
traditional regresson techniques may be partly
due to the tremely large number of
parameters in such neural network models.

PERFORMANCE AFTER TRAINING WITH NOISY
DATA

In order to get a more redlistic estimate of
the adequacy of the back-propagation modd,
some method has to be used to eiminate the
problem that the modd is smply capturing part
of the aror variance One posshility isto train
the model not on the original data but on sets of
data obtained by adding a small amount of error
variance to the original data. Thus, in the next
analyses we trained the mode not on the
original data but on sets of data ohtained by
adding of uniformly distributed random error to

Neural Networks and Regressior

the original data. To be more predse, on each
training trial and for each input variable, a
random number was chosen from a uniform
digtribution in the range (-.075 +.075. This
number was then added to the original input
value, again using the redtriction that the
resulting values hould remain within the range
[0,1]. This was done independently for each
case (each face). Since new random values were
used on each run through the whole sequence of
faces, this procedure makes it impossble for the
network modd to adjust itsdf to minor
variations of the input data. The resulting
parameter estimates $ould then be more robust
to noise and hopefully generali ze better to new,
not-seen-before, data. Since the problem was
most evident in the NN1-models, these new
analyses were only performed in for the NN1-
15 and NN1-30 modd's (scaling of output units
between 0 and 1).

For the linear regresson model a similar
procedure was used. However, since it is not
possble to analyze unlimited numbers of input
data, in this case ten data sets were generated
using the method described abowe. The
parameter estimates were obtained by
submitting the cmbined data to one overall
regresson analysis. Hence the resulting data
set consisted of a total of 2990 cases.

After the parameter estimates had been
ohtained, the resulting models were applied to
the original (error freg data. In addition, all of
the analyses discussed previousy were repeated
(i.e., performance under noise and with missng
data, and the generalization test).

As one might have epeded, the results
for the linear regresson modd were
comparable to those oktained previously. For
the original errorless data, the percentage of
variance eplained was R°=63.0 (D =557).
Interestingly, the network models gill gave a
better fit. For NN1-15 we found: R*=67.1
(D=528) and for NN1-30R*=73.0 D=478).

Insert Figures 5 and 6 about here

Next, we looked at how well the models
could be used to retrieve matching faces from a
database. As before, we wmputed for each set
of predicted physical measures the simil arity to
each of the 299faces and computed the rank for
the target face The results are shown in Figure
5 where the probability is given that the target
face is among the n best-matching faces. Once
again, the network model and in particular the



NN1-30 model does better than the linear
model.

These results ow that the addition of a
small amount of random noise to the input has
not serioudy affeced the ability of the models
to corredly predict the physical measures from
the verbal descriptions. However, the most
important issue is whether such a procedure
helps to diminate the rather poor performance
of the network modd when the input is
degraded. As before, we computed for all three
models the ability to predict the output when a
varying amount of random noise is added to the
input. Figure 6 shows the percentage of
explained variance of the output measures as a
function of the amount of noise added. Clearly,
the ability of the network models to cope with
such degraded input has been greatly improved
as can be seen by comparing Figure 6 to Figure
3. Interestingly, the regresson mode also
performs better, espedally when the amount of
noise is relatively large. However, these results
also show that under such conditions al three
models converge to the same performance
Hence these results $ow that the procedure
that was used to oltain more robust parameter
estimates was indeed succesqul but that there
does not seam to ke anything spedal about the
ability of the network models to handle
degraded input.

A similar conclusion is obtained from the
analysis in which 20% of the input data were
replaced by their mean values (smulating the
effed of missng data). The results (again in
terms of the percentage of variance eplained)
were: linear: R?=51.5; NN1-15: R°=51.0; NN1-
30: R°=52.6. All models perform about equally
well and better (espedally the network models)
than in the original analysis.

How about the cpability of the modes to
generalize to new stimuli not seen before? We
tested the performance of the three models on
the same set of 50 faces that was used in the
previous test of generaizaion. The results
were: linear: R?=43.1; NN1-15: R?*=30.6; NN1-
30: R°=27.1. Thus, athough the generalizaion
performance of the network models is greatly
improved, it is dill inferior to that of the
regresson model. It should be noted that thisis
the only performance test that is not in some
sense based on the original training data.
Hence it might be that the back-propagation
model till has ©ome generalizaion problems
due to the fact that it is inherently more
flexible. Whether or not thisresult is gedfic to
the present example (faces may be a class of
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stimuli that are indeed best described by linear
functions, see Abdi et al., 1995, is ssmething
that has to be clarified in future research.

GENERAL DISCUSSION AND CONCLUSIONS

The results reported in this paper clearly
show that back-propagation modds do not have
a spedal ahility to handle noisy data. Although
these models were able to learn complex
mappings between input and output data, this
ability does not imply that such models will
aso peform wedl under more stringent
conditions. Thus, in the present analyses, the
network modd broke down when noise was
added to the input. This was espedally true for
the modd with a relatively large number of
hidden units. Although this model gave a
superior fit when applied to the data on which
it was originaly trained, it performed quite
poaly when random error was added to the
input. It aso performed worse than the
regresson model when part of the input data
was replaced by missng data. Hence contrary
to what is frequently claimed, the back-
propagation modd does not seean to have a
special ability for ‘graceful degradation’.

We believe that the rather poor
performance of the back-propagation model
under degraded conditions is due to the
flexibility and espedally the etremdy large
number of parameters in these models. This
enables aich models to tune themselves to
spedfic dharacteristics of individual training
stimuli, characteristics that are not predictive
for other exemplars within the same set. This
property leads to very good predictions for the
set of stimuli on which the mode is trained
(those stimuli that are used to estimate the
parameters of the model) but also to the poor
performance when such stimuli are dightly
altered, for example by adding random noise.

In order to prevent this, either the size of
the training set has to be increased or some
other means must be used to force the modd to
focus on the most important relations between
the input and output variables. One way to
achieve thisisto deaease the number of hidden
units. Thus, we showed that reducing the
number of hidden units from 30 to 15
deaeases peformance on the training
exemplars but increases the performance when
the input is degraded. An alternative method
that seans to be more promising is to add a
small amount of random noise to the input data.



As we showed in the final analyses, this does
not affed the performance on the training set
but greatly improves performance under
degraded conditions. In the present case, the
performance of al modes (regresson as well
as back-propagation) converged to the same
levd as the amount of added noise was
increased. Interestingly, all models benefited
from this method, although the advantage was
most significant for the back-propagation

model with the larger number of hidden units.

The present finding that regresson
models perform at least as well as feed-forward
neural network models, might be aiticized as
being spedfic for the airrent application. Thus,
one might assume that the present application
just happens to involve more or less linear
relations between the input and output variables
and hence it is not surprising that the linear
regresson model outperforms the neural
network models. However, if this was indeed
the @ase, then why should the neural network
models perform better than the regresson
model on the original training set? It should
aso he noted that such back-propagation
models have been claimed to be able to handle
any type of relationship, hence they should not
have any difficulties with a smple linear
relationship.

A semnd interesting comparison between
the regresson model and the back-propagation
modd involves the extent to which the models
capture the underlying relations o asto be able
to generalize to new instances. It turns out that
the regresson mode! is definitely superior with
resped to generalizaion. Interestingly, the
rather poor generalizaion performance of the
back-propagation model remains even when the
model istrained on noisy input. Hence whereas
the poor performance on degraded input seams
to ke manly due to the large number of
parameters, the poor generali zaion seans to be
due to aher factors that cannot be so easly
rectified.

All in al then, we arrive at the rather
sobering conclusion that feedforward neural
network models are not as siccessul as they
seam to be when one only considers the extent
to which the mode is able to make @rred
predictions for the set of exemplars on which it
was trained. Although such comparisons are
not usually made, traditional regresson models
may in fact outperform the network models, at
least when one takes into account such aspeds
as the ability to generalize to new data.
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NOTES

! Rescaling o the output variables is necessry
because the network model (i.e. the sigmoid
transfer function) produces values between Oand 1
at the output units.

APPENDIX A: PHYSICAL MEASURES

In the data colleded by Shepherd (see
Shepherd, 1986 photographs were used of a
large number of faces (frontal view). For each
face the exact (relative) location of 37 pe
defined points was measured (e.g., midpaoint of
hairline, midpoint of upper lip). On the basis of
these points 30 cerived measures were defined.
These 30 measures were used in the present
rescarch as the to-be-predicted physical
measures. They may be grouped in three
categories:

DISTANCE MEASURES
M1 inter ocular distance
M2 forehead height

M3 nose length

M4 mouth width

M5 upper lip thickness
M6 lower lip thickness
M7 chin height

M8 face height

M9 face width at brow
M10 face width at cheek
M11  face width at mouth
M12  face width at chin
M13  eyebrow height
M14  eyebrow width

M15  eyebrow setting
M16  hair length

M17  nosewidth at bridge
M18  eye narrowness

AREA MEASURES
M19 face area
M20  hair area
M21  eye area
M22  chin area
M23  mouth area
M24  nose area

RATIO MEASURES

M25  eye:face ratio(M21/M19)
M26  mouth:face ratio(M23/M19)
M27  nose:face ratio(M24/M19)
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M28  hair:face ratio(M20/M19)
M29  chin:face ratio(M22/M19)
M30 faceheight:width ratio (M8/M10)

APPENDIX B: RATING SCALES

The dataset that was available mnsisted of 50
ratings (means based of 10 raters). Most ratings
(P1-P38) were ohtained using 5-point rating
scales.  Parameters 3947 were  scored
dichotomously. (0=no, 1=yes). Theremaining 3
parameters (P48-P50) consisted of height,
weight, and age. Of these 50 parameters 5 were
not used in the analyses, viz. P39, P43, P44,
P45, and P47.

SHAPE OF THE FACE
P1: short-long

P2: narrow-broad

P3: bony-fleshy

COMPLEXION

P4: fair-dark

P5: pale-florid

P6: unlined-lined
P7: clear-blemished

HAIR

P8: short-long

P9: tidy-untidy

P10: straight-curly

P11: bald-full head

P12: no grey-white

P13: black-brown-red-fair-blond

FOREHEAD

P14: low-high

P15: narrow-broad
P16: straight-sloping

EYEBROWS

P17. thin-thick

P18. straight-bent

P19. meet in the middle-set far apart
P20. low-high

EYES

P21. small-large

P22. narrowed-open

P23. close set-wide spaced

P24. deep set-protruding

P25. blue-grey-green-hazel-brown.

EARS
P26. small-large

NOSE

P27. small-large

P28. short-long

P29. narrow-broad

P30. concave-hooked

P31. small nostrils-large nostrils
P32. narrow tip-broad tip.

MOUTH

P33. small-large

P34. thin upper lip-thick upper lip
P35. thin lower lip-thick upper lip



CHIN

P36. small-large
P37. pointed-square
P38. receding-jutting

FACIAL HAIR
P39. none at all
P40. mustache
P41. sideburns
P42. beard

PHYSICAL PECULIARITIES.

P43. squint
P44. bags under eyes
P45. scars

ACCESSORIES
P46. glasses
P47. earring
OTHER

P48. height
P49. weight
P50. age
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Figure 1. Probability that the target is amongnteest-matching faces (scaling between 0 and 1).
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Figure 2. Probability that the target is among the n best-matching faces (scaling between 0.4 and 0.6).
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Figure 3. Percentage variance eplained as a function of the amount of noise added to the input (scaling
between 0 and 1).
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Figure 4 Percentage variance eplained as a function of the amount of noise added to the input (scaling
between 0.4 and 0.6).
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Figure 5 Probability that the target is amongnhmest-matching faces (training using noisy input).
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Figure 6 Percentage variance e&plained as a function of the amount of noise added to the input
(training using noisy input).



