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Abstract

This chapter discusses commonalities and differences in the cognitive mechanisms un-
derlying different search tasks, such as  spatial search, visual search, memory retrieval, 
action search, problem solving, and decision making. Three key issues relevant across 
all types of search are distinguished: (a) the initiation of search, (b) the  maintenance 
and adaptive modifi cation of the search process, and (c) the termination of search. As 
to search  initiation, research is summarized concerning the effect of the number of 
cues on diffi culty for executing search, and which factors structure the cue hierarchy. 
Discussion follows on how knowledge about metacognitive processes in memory might 
be used for better understanding the processes in maintenance of search, and heuristic 
principles for stopping search, possibly shared across different search tasks, are identi-
fi ed. Finally, consideration is given to how search processes might change as a function 
of experience and aging.

Introduction

In The Disappearance of Lady Frances Carfax (Doyle 1917), Sherlock Holmes 
is commissioned to track down a wealthy noblewomen who mysteriously van-
ished while traveling through Europe. To fi nd Carfax, the detective and his ally, 
Dr. Watson, meticulously reconstruct the Lady’s itinerary and visit the places 
where she had been seen prior to her disappearance. The investigation starts in 
Lausanne, where Watson is informed that Carfax has moved to Baden-Baden; 
there, he is sent to her long-term maid in Montpellier, who tells Watson that 
Carfax laid her off after making the acquaintance of a certain Dr. Shlessinger. 
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This information takes Holmes and Watson back to London, where they search 
for further clues as to the Lady’s whereabouts. Although few of us engage in 
detective work regularly, Holmes’ investigation resembles, in many respects, 
our more mundane search activities. In particular, it seems fair to say that most 
of our cognitive activities involve search of some kind, whether for a name to 
go with a face, a word to describe how we are feeling, an object hidden some-
where in the scene before us, or a solution to a problem encountered on the job.

But how  do we search? As a starting point, consider how animals go about 
searching for resources in space (Bell 1991). In general, animals attempt to fi nd 
as much resource in as short a time as possible. If there are cues to locations of 
resources that can be sensed from afar (e.g., seeing prey, chemically sensing 
conspecifi cs already at a resource), then these should govern the search; this is 
similar to visual search being guided to areas of interest detected in peripheral 
vision. Otherwise, in cases of uncertain resource location, organisms should 
tend to search in a way that brings them to new locations without going over 
recently visited locations again (akin to sampling without replacement). A ran-
dom search (e.g., Brownian motion) does not accomplish this well (as evident, 
e.g., in the protest among iPod users against Apple’s original random shuffl e 
algorithm, which brought up recently played songs too frequently). Therefore, 
animals often use search strategies that move across the environment on a 
roughly straight course, or use a more systematic “space-fi lling” path (e.g., 
spiraling outward from a starting point).

Spatial foraging is but one example of a task that involves search. Search 
is also a key factor in  memory retrieval,  visual search, action search,  problem 
solving, and decision making. In this chapter we discuss both the common-
alities and differences between these different types of search. To structure 
our discussion, we distinguish three basic issues in search: (a) how search is 
initiated, (b) how search is maintained and adaptively modifi ed, and (c) when 
and how search is terminated. In addition, we discuss  individual differences in 
search that may arise due to developmental changes, due to prior experience 
in these or similar tasks, or due to preexisting (possibly genetic) differences in 
information processing.

How Is Search Initiated?

Cue Selection

The fi rst step  to get the search process going is to establish a set of features (or 
cues) that defi ne the object of the search. To illustrate, consider a visual search 
task where you set out to look for a turquoise ring in the bedroom: What are 
the prerequisites for initiating the search? Search for the ring will not proceed 
randomly; rather,  attention will be guided to items that share basic features 
with the target. These basic features (e.g., size, shape, color of the desired ring) 
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serve as a template for comparing items encountered as search proceeds, and 
the goal is to fi nd an adequate match between this abstract representation of 
the target item and the visual image encountered during search. Interestingly, 
guiding features are not the same as perceptual features.  Guidance seems to be 
based on a coarse and categorical representation of a set of basic features. To 
illustrate: although the ring may clearly be a particular shade of “turquoise,” 
your ability to use color for guidance is limited to directing your  attention to 
items that are broadly, categorically “blue” (Daoutis et al. 2006). Moreover, 
as rings occur in some places (e.g., on dressers) and not in others (e.g., mid-
air), search will be guided by scene-based properties, or context features 
(Biederman 1972).

Similar principles hold for search in  memory, where it is assumed that a 
template representation consisting of a set of “retrieval cues” is used to con-
strain the output of the memory system during search. As in  visual search, the 
 retrieval cues contain information that distinguishes the to-be-retrieved item 
from all of the other traces that may reside in the memory system. Examples 
of these constraining retrieval cues are semantic characteristics (e.g., animals) 
or the temporal circumstances of the item’s occurrence (e.g., recall the items 
that were on list A). There is also evidence that people can use multiple cues to 
constrain simultaneously what is being retrieved during memory search (e.g., 
recall all the animals that were on list A; Polyn et al. 2011).

In some search tasks, the set of features guiding search may arise directly 
from the task. In visual search tasks, for instance, the description of the target 
(e.g., turquoise ring) readily provides the features that will lead to the target 
(e.g., round object, has a hole). In other search tasks, however, the set of fea-
tures has to be actively generated by the participant (below we discuss fac-
tors that can affect the construction of the feature set, such as the predicted 
effectiveness of the cues). In  memory search, the set of target features might 
also be defi ned by the specifi c recall strategy used by the participant (e.g., 
search for items in alphabetical order). Whereas there is considerable research 
on memory and visual search, we still know relatively little about cue selection 
in nonvisual search, such as auditory (e.g., speaker identifi cation) or tactile 
search. As discussed below, given that several principles in search are shared 
across different search types, it is likely that aspects of feature or cue selection 
described above also generalize to these types of search.

How Do Multiple Cues Affect Search?

Often, a target is defi ned by a set of multiple features, such as when one search-
es for an item that is both a ring and blue. How does the complexity of the tar-
get affect the diffi culty of search? Interestingly, the answer could vary across 
different types of search. For instance, visual search based on conjunctive rules 
(e.g., fi nd the red X) seems to be more diffi cult than when based on a single 
cue (e.g., fi nd the X). Similarly, it is assumed that search prior to  probability 

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills, 
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA: 
MIT Press. ISBN 978-0-262-01809-8.



240 T. Pachur et al. 

judgments is more diffi cult for judgments of conditional probability (e.g., the 
probability of breast cancer given a positive mammogram), which are based 
on multiple cues, than search with only one cue (because cues are processed 
sequentially; e.g., Dougherty et al. 1999). Memory models such as  search of 
associative  memory or SAM (Raaijmakers and Shiffrin 1981), by contrast, do 
not necessarily assume that combining multiple cues complicates search.

Which Factors Guide the Selection of Cues?

The selection of  retrieval cues used in standard memory-retrieval paradigms 
is relatively well understood, at least compared to cue-selection processes in 
real-world tasks (e.g.,  medical diagnosis). For example, in laboratory tasks, 
each item (or in some cases an entire list) is generally associated with a single 
and unique cue (e.g., in paired-associates learning; Calkins 1894). In contrast, 
in many real-world retrieval tasks, cues are shared across items or “lists” and 
are thus only probabilistically related to the target item. To illustrate, in medi-
cine a retrieval cue such as “high white-blood cell count” is associated with 
several different pathologies, ranging from bacterial infection to disorders of 
bone marrow (e.g., leukemia). These pathologies are often organized hierarchi-
cally, such that there are many specifi c examples of the general class of bacte-
rial infection and many specifi c examples of the general class of bone-marrow 
disorders. Within each class of pathologies, individual examples (which could 
be called “hypotheses”) might be associated with specifi c symptoms (“data”). 
Given a representation that can be expressed in terms of hypotheses and data, 
we can now ask the question: What is the probability of the data (a symptom) 
given a particular hypothesis (a disease)? The answer is the diagnosticity or 
validity of that symptom cue. Though not a deterministic cue, the presence of 
a high white-blood cell count may still be a diagnostic piece of information. In 
the context of memory retrieval tasks, one can imagine that the diagnosticity (or 
validity) of a particular memory retrieval cue can be exploited to help guide the 
retrieval of potential hypotheses from long-term memory (Thomas et al. 2008; 
Dougherty et al. 2010). For example, in a simplifi ed environment, imagine that 
the diagnosticity of a particular cue (symptom) for discriminating between two 
mutually exclusive and exhaustive categories of diseases is 2:1. This would 
imply that twice as many hypotheses from disease category 1 are related to 
the observed symptom compared to disease category 2. Such cue diagnosticity 
provides valuable information that can and should be used in determining how 
to search through memory in diagnosis tasks; namely, search using the most 
diagnostic cues available. Put more generally, the statistical properties of a 
cue likely inform basic memory search processes. Unfortunately, there is little 
work on how statistical properties of the retrieval cues affect cue selection in 
 memory search (see, however, Anderson 1991).

The idea that search for cues is guided by their usefulness is, by contrast, a 
common one in other realms of judgment and decision making. For instance, 
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the  take-the-best heuristic (Gigerenzer and Goldstein 1996) assumes that cues 
are inspected in sequential order according to their validity (defi ned as the 
probability that the cue leads to a correct response given that it discriminates 
between two options). The large literature on multiple-cue probability learn-
ing has examined the processes by which people acquire knowledge about the 
validity of cues (e.g., Klayman 1988; for other approaches, see Dieckmann and 
Todd 2012). Alternatively, people may use cues in an order, based on how like-
ly they are to lead to any decision (i.e., their “discrimination rate”; cf. Rakow 
et al. 2005), or a combination of validity and discrimination rate (i.e., their 
“success”; Martignon and Hoffrage 1999), on intuitive causal beliefs about the 
cues’ importance (Chapman and Chapman 1969).

Search Initiation in Action Selection

While  both visual search and memory search usually have a clearly specifi ed 
target, other types of search are more open-ended and, as a consequence, may 
be guided in a rather different fashion. For instance, consider exploring which 
out of many possible actions will yield desired outcomes (or will avoid unde-
sirable outcomes). Animals and humans are often confronted with a variety of 
opportunities for action in a particular situation. Some of these options might 
be more alluring or potentiating than others; some might be more risky or more 
effort-consuming.

Action selection in these circumstances implicates search in at least two 
senses: external (i.e., traversing the environment and exploring the results of 
actions so as to learn  action-outcome relationships, reward contingencies, or 
cognitive maps) and internal (i.e., the use of these learned representations to 
evaluate candidate courses of action to guide subsequent action selection to-
ward those most likely to maximize reward). (Here reward may be determined 
by a cost-benefi t analysis of potential outcomes vis-à-vis current motivational 
states.) The search for those actions that have maximal (subjective) expected 
utility (another way of talking about reward) is well captured by  reinforcement 
learning models, which describe how regularities among action-outcome con-
tingencies are extracted from experience. Broadly, this type of action search 
will be initiated, constrained, guided, and terminated by an agent’s current con-
cerns, intentions, and prior experience, as well as by its present motivational 
state (e.g., fatigue, satiation). In these respects, search based on reinforcement 
learning may differ from visual and  memory  search, in which  initiation,  guid-
ance, and  termination are generally infl uenced more explicitly by instructions 
and cues.

Although it is traditionally assumed that search occurs over actions, com-
puting their values by averaging over the possible reward outcomes to which 
they might lead, a recent alternative proposes that agents might fi rst choose 
between outcomes, then search over action plans for how best to obtain the 
desired outcome (Padoa-Schioppa and Assad 2006; Krajbich et al. 2010). The 
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initial goal choice in this case may occur in a similar fashion as initiation of 
memory or visual search (e.g., based on feature templates).

Construction of the Search Space

In addition to coming up with a set of cues that defi ne what to look for, some 
types of search also require the defi nition of the search space; that is, where it 
is possible to look. In visual search, it has been hypothesized that individuals 
need to construct the search space by “parsing” the scene into proto-objects, re-
gions that will be selected by attention (Rensink 2000a). Moreover, in searches 
that are extended in time, there may be an initial plan for a search path, which 
is refi ned during search as a function of what is found (in the next section, we 
elaborate on such search maintenance processes). For instance, when asked, 
in a verbal fl uency task, to retrieve all movies seen over the last six months, 
one might fi rst search among the fi lms seen in a particular movie theater and 
then move on to search among fi lms of a particular genre, rather than probing 
memory for movies in general. In memory search, the refi nement of search can 
thus consist of  switching between different sets of retrieval cues.

A similar construction of a search space is relevant in problem solving and 
in multi-attribute choice, where a set of possible options needs to be generated 
from which a fi nal choice can be made (Marewski et al. 2010; Tversky 1972). 
Sometimes, such a consideration set might be generated more or less auto-
matically—and effi ciently. In a study that examined  action selection in sports, 
Johnson and Raab (2003) found that options which are quickly generated tend 
to be of higher quality than options generated more slowly (see also Dougherty 
et al. 1997; Gettys and Fisher 1979).

The construction of the search space can have a considerable effect on the 
 effi ciency of search. For instance, in a  verbal fl uency task, search becomes 
more diffi cult the larger the category from which objects are recalled (though 
the effect can depend on the retrieval strategy; Indow and Togano 1970; see 
also Murdock and Okada 1970).

Open Questions

While some of the principles guiding search initiation seem to be similar across 
different types of search, there are also some differences. What is currently un-
clear, however, is the extent to which the observed differences between various 
types of search may be due to the experimental paradigms used to study the 
different types of search. Natural environments may provide a much richer 
context than the rather artifi cial settings used in the laboratory. Consequently, 
navigation through search spaces in the real world may be much easier, due 
to the constraints imposed. Furthermore, the selection of cues and the con-
struction of the search space are likely to arise from a dynamic interplay of 
 divergent (i.e., global) and  convergent (i.e., local) search strategies, possibly 
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applied sequentially; methods must be developed to investigate such dynamic 
processes, to which we turn to next.

How Is Search Maintained and Dynamically Modifi ed?

After initiation,  how is search maintained? The answer might depend strongly 
on whether a search targeted just one single thing (e.g., a nest or partner) or 
whether search is ongoing (e.g., for food). Whereas in the fi rst case search is 
(often) stopped after the target has been found, in the latter case, search may 
continue after fi nding a target, seeking other targets.

Global versus Local Search Strategies

In many situations, search may be characterized as  switching between  explo-
ration (or  divergent search) and  exploitation (or  convergent search). The re-
spective contributions of exploration and exploitation are infl uenced by the 
structure of the environment, in particular by whether the desired resource oc-
curs in patches or not. If resources are patchy (i.e., distributed in clumps with 
relatively empty regions between them), then fi nding one resource indicates 
that others may be nearby. Here, the organism can benefi t from switching from 
exploration between patches to exploitation of the discovered patch. Because 
the resources within a patch are themselves often not immediately detectable, 
and thus also require search (e.g., a berry bush is a patch in which berries must 
be sought by looking underneath leaves), this switching can also be thought of 
as going from global to local search. Local within-patch search can be imple-
mented by taking smaller steps or making smaller movements to stay within 
the patch, turning more to stay in the same vicinity, and turning back if the 
edge of the patch is detected (Bell 1991).

A popular way to study the dynamic interplay between exploration and ex-
ploitation is with so-called  bandit problems, in which there are M choices you 
can make for a sequence of N trials (e.g., Gittins 1979; Kaelbling et al. 1996). 
Each choice has some fi xed, but unknown, rate of providing a binary reward. 
The goal is to maximize the total number of rewards obtained, and the search 
problem is then to explore the M choices suffi ciently to determine which one(s) 
to exploit on further trials (for experimental studies, see Daw et al. 2006; Lee 
et al. 2011).

When to Leave the Patch?

When resources are distributed in patches and one is currently being exploited, 
another problem arises: as the resources in the patch are increasingly being 
depleted, the benefi t of staying in the patch decreases, and at some point the 
organism must decide to leave that patch and return to exploring for other 
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patches. The general principle guiding animals in this situation is captured 
in optimal foraging theory by the  marginal value theorem (Charnov 1976). 
Accordingly, the highest rate of return of resources can be achieved if the patch 
is left as soon as the rate of fi nding things in that patch falls below the expected 
mean rate of fi nding things across the environment as a whole when the opti-
mal strategy is followed.

Although a useful benchmark, the marginal value theorem makes strong 
and often unrealistic assumptions about the organism’s knowledge and com-
putational capacities with respect to determining instantaneous and expected 
rates of return. Consequently, a variety of heuristics for  patch-leaving deci-
sions have been proposed that are based on simple, easy-to-compute cues: how 
much time one has already spent in the patch, how many items one has found 
in the patch, how long it has been since the previous item was found in the 
patch, and how long it took to get to this patch in the fi rst place. The effective-
ness of specifi c patch-leaving heuristics depends in part on how resources are 
distributed across patches. For instance, if resources are aggregated such that 
there are some very good patches along with many middling ones, then it is 
appropriate to leave the patch after some giving-up-time has passed since the 
previous item was found. Humans seem to use such a rule in some  spatial and 
memory search tasks (Wilke et al. 2009; Hutchinson et al. 2008; see also Payne 
et al. 2007).

Another way to conceptualize the dynamic transition between global and 
local search is  area-restricted search, in which an organism performs more 
high-angle turns when resources are encountered and so stays in a local area, 
gradually returning to low-angle turns when resources are not encountered for 
some time. Area-restricted search can yield more continuous transitions back 
and forth between local and global search over time, and may be more ap-
propriate where patch boundaries are fuzzy (for an overview, see Hills 2006). 
In addition to factors such as the current and expected rate of return and the 
time spent in a patch, it has also been shown that animals sometimes take into 
account the variability of the patches they seek. For instance, when they must 
reach a threshold amount of food to survive the night, they might prefer a patch 
with greater variability but lower overall mean return rate over a less variable 
but higher mean one if the former, but not the latter, has a chance of providing 
enough food for survival (as described in risk-sensitive foraging theory; for an 
overview, see McNamara and Houston 1992).

How Is Search Monitored?

Memory Search

Managing  the search process effectively requires keeping track of the contents 
of the current as well as past search space. This monitoring probably relies 
heavily on what are termed metacognitive processes; that is, processes which 
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keep track of how aspects of cognition are proceeding (Koriat et al. 2000; 
Metcalfe and Shimamura 1994; Nelson 1996). Although we still know rela-
tively little about the exact nature of the metacognitive processes involved in 
search, it is possible that they are similar to those used in other domains, such 
as (a) monitoring with respect to the contents of memory and (b) monitor-
ing with respect to the acquisition or learnability of study material. Several 
paradigms have been developed to investigate these processes (Nelson 1996; 
Nelson et al. 2004). Monitoring of the contents of memory is often studied by 
asking people to assess their confi dence in the  accuracy of a retrieved piece of 
information, or by asking them to assess the likelihood that they will be able to 
retrieve a particular piece of information in the future, given that it cannot be 
retrieved at the present time (feeling-of-knowing judgments). The monitoring 
of the acquisition of information is studied by asking people to assess how well 
learned a piece of material is (judgments-of-learning). People’s assessments 
in these tasks are often rather accurate and have been shown to predict future 
recallability. A second method to study monitoring of information acquisition 
is by asking people to assess how easily they will be able to learn a newly expe-
rienced piece of information (ease-of-learning); for instance, when estimating 
how much study time to allocate to studying for a test based on the diffi culty 
of the material. Ease-of-learning judgments may play out in cognitive search 
by infl uencing how long one spends in an exploration mode, assuming that one 
goal of exploration is to discover or learn environmental or statistical contin-
gencies (see also Metcalfe and Jacobs 2010; for a review of different types of 
metacognitive judgments, see Nelson 1996).

Although some work has examined how metacognitive monitoring limits 
or informs search behavior in single-item recall tasks (e.g., Dougherty et al. 
2005; Nelson et al. 1986), there is no work on more complex search tasks. 
For instance, in  verbal fl uency tasks (e.g., name all animals you can think of) 
it is necessary to monitor how much of a semantic space has already been 
exploited, or to estimate the size of the remaining unused portion of the “infor-
mation patch.” Another important gap in the understanding of metacognitive 
monitoring of memory is how it might relate to error monitoring and detec-
tion, as carried out by functions localized to the prefrontal cortex. Shimamura 
(2008) proposed a neurocognitive model of metacognition that postulates a 
fundamental role of cognitive control for regulating and monitoring metacog-
nitive representations.

Decision Making and Problem Solving

Metacognitive monitoring processes in other search tasks are even less well 
studied. For example, in decision-making tasks, which are often assumed to 
be based on sequential search of cues (e.g., Payne et al. 1993; Gigerenzer et 
al. 1999), how does one monitor which cues have been previously accessed 
in the course of a decision? Does a physician use a similar process to monitor 
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symptoms that have already been checked or evaluated while generating a di-
agnosis? Finally, monitoring processes might also be important for searching 
and navigating the solution space in problem-solving tasks, where one has to 
monitor one’s current location in the solution space and which locations have 
already been visited (cf. hill climbing; Newell and Simon 1972).

Open Questions

Although the categorical distinction between exploration and  exploitation 
describes some search processes quite well, in other cases it may be more 
appropriate to use a continuous approach. In addition, it is still relatively un-
clear what mediates the switch between exploration and exploitation. One pos-
sibility is that switching is based on a form of confl ict signaling, indicating 
that there is a mismatch between the encountered stimuli and the target (see 
Hommel, this volume). Specifi cally, mild confl ict might lead to increased top-
down control (exploitation), whereas stronger confl ict might lead to  stress and 
a change in the search strategy (exploration).

Another issue concerns the metaphors and analogies we use to conceptual-
ize  search. We often liken internal search in memory to external search in a 
spatially laid out environment. Might this spatial metaphor critically constrain 
the way we think about and understand search? Clearly, there are alternative 
conceptualizations, such as distributed, symbolic, or temporal representations, 
which might highlight different aspects of the search process rather than por-
tray search in spatial terms (see Schooler et al., this volume). For instance, the 
importance of navigation costs may be less important if search occurs within a 
distributed representation.

How Are Search Processes Controlled?

As mentioned above, effective search often requires maintenance and control 
processes (e.g., to switch dynamically between exploration and exploitation). 
What are the proximate psychological capacities that are tapped by these con-
trol processes? A general assumption in infl uential models of cognitive con-
trol (inspired by the cybernetic approach; Wiener 1948) is that information 
is sampled and matched against a goal representation until a reasonable fi t is 
achieved (e.g., Botvinick et al. 2001; Miller et al. 1960). Top-down control 
over cognitive search might be achieved in a similar manner. In a visual search 
task, for example, this would suggest that a representation of the target stored 
in working memory is matched against stimuli encountered during search until 
the target is identifi ed. In tasks requiring action search, it has been proposed 
that confl ict—that is, when there is a mismatch between the target and the 
stimuli encountered—leads to an increase of  top-down control (e.g., Botvinick 
et al. 2001).  Control, however, can sometimes also be governed by local  prim-
ing (i.e., arising from the stimuli) rather than managed in a top-down fashion. 
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For instance, in memory search, the search for the next item to be considered 
will be infl uenced by both top-down constraints (the target representation) and 
the similarity between the current and the previous items (and the priming the 
previous item generates).

Given that controlling the search process requires continuous updating of 
the information currently in the focus of  attention, processes in working mem-
ory are likely to play a key role. Within cognitive psychology, the construct 
of  working memory has been defi ned as the ability to maintain focus of atten-
tion on goal-relevant information in the face of distraction (Kane et al. 2001). 
Factor analysis and experimental work have revealed that working memory 
capacity (as measured by operation-related tasks) is correlated with perfor-
mance in a number of laboratory and nonlaboratory tasks, including response 
inhibition tasks (anti-saccade, Stroop), auditory tasks (dichotic listening tasks), 
resistance to proactive interference (Brown-Peterson task), measures of gen-
eral fl uid abilities, note taking, and planning (Engle 2002).

Increasing evidence indicates that key characteristics of cognitive con-
trol during search are indeed correlated with working memory capacity. For 
instance, Hills et al. (2010b) have proposed that a higher working memory 
capacity is associated with a lower frequency of switching between patches. 
Currently it is unclear how exactly working memory capacity affects the 
switching behavior. For instance, working memory could affect the signal-
to-noise ratio in information processing (i.e., the ability to discriminate be-
tween targets and distractors), which might help focusing on the current task. 
Alternatively, a higher working memory capacity could lead to better confl ict 
resolution (Bäckman et al. 2010; Li et al. 2001), for instance, by facilitating the 
identifi cation of the actual signal within the noise or by suppressing task-irrele-
vant information. Moreover, it is likely that not all subcomponents of working 
memory affect control processes equally during search (Friedman et al. 2008; 
Miyake et al. 2000). Thus, further investigation is needed to distinguish more 
precisely the relevant components.

In light of the current evidence for the infl uence of cognitive control on 
 switching behavior, it might be useful to distinguish between switching which 
results from a strategic decision and switching that occurs due to unsystematic 
factors (i.e., distraction). On one hand, higher working memory is assumed 
to help individuals stay focused on searching within a patch (while a patch 
still yields successful outcomes), thus decreasing the switching rate, as shown 
by Hills and Pachur (2012) and Hills et al. (2011). On the other hand, to the 
extent that strategic patch switching (e.g., when disengaging from a patch and 
switching to exploration once the current patch has been depleted) involves 
task-switching costs, higher cognitive control might be associated with an 
increased switching rate. For instance, Mayr (2001) found that older adults 
(who are likely to have a reduced working memory capacity) display higher 
switching costs than younger adults in a  task-switching paradigm. Given the 
potentially multiple roles of working memory in exploitation and exploration, 
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future research should delineate more clearly the factors that moderate the re-
lationship between working memory and search.

Modes of Control versus Levels of Control

There is agreement that agents can change their strategy in search-related 
tasks, but how can we describe this change between strategies? One approach 
is to group the strategies in terms of binary dimensions (e.g., exploitation vs. 
exploration), so that changes between them can be seen as moving agents to-
ward one or the other pole of each dimension. For instance, starting to search 
within a patch ( spatial foraging) or a visual group (visual search) or item cat-
egory (memory search) can be described as moving out of exploration toward 
exploitation. Alternatively, changing between strategies can be viewed as up- 
or down-movements in a goal hierarchy (Miller et al. 1960). Accordingly, the 
same strategic choice can be considered as moving down one level in a hier-
archy of possible representations of search targets, from a more general level, 
which includes all available patches, groups, or categories as possible target 
locations, to a more specifi c level that restricts the search space to one patch, 
group, or category. The advantage of viewing the dynamics in search mainte-
nance in terms of different levels of control is that it allows further levels that 
are more concrete (lower) or abstract (higher) to be added without giving up 
the general theoretical scheme.

How Is Search Stopped?

Earlier, in our discussion of the maintenance of search, we addressed the issue 
of how to decide when to modify the current search behavior (e.g., leaving a 
patch to move on to the next one). Similar principles apply to decide when to 
terminate the search process altogether. Although the decision to stop search 
is relevant for most search tasks, relatively little is known about the extent to 
which similar principles govern people’s stopping behavior across these tasks. 
In any case, for search to be effective,  stopping rules need to be sensitive to 
the characteristics of the task. In some tasks, for instance, it might be crucial 
to fi nd at least one object (e.g., in food search or mate choice), whereas in oth-
ers one can be more selective and stop search if a threshold is not met (e.g., 
in consumer product search or information foraging), irrespective of whether 
anything has been found at all.

Several empirical tasks have been developed to investigate the effectiveness 
of people’s stopping rules in sequential choice. A prominent approach uses  op-
timal  stopping problems, for which optimal points to end search can, in princi-
ple, be determined. In one type of optimal stopping problem, known as the sec-
retary or dowry  problem (Ferguson 1989; Gilbert and Mosteller 1966), there is 
a sequence of N numbers distributed in some unknown way and independently 
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sampled. The searcher’s goal is to choose the maximum number in the se-
quence, under the constraint that only the current number can be chosen at the 
time it is presented and that one cannot return to a previous number. In this 
version of the task, the searcher only learns the rank of the current number rela-
tive to all those previously seen. In other versions, the numbers themselves are 
seen, N may be unknown, the distribution may be known, and the utility func-
tion may differ (e.g., with continuous payoff rather than just  success or failure; 
Bearden 2006; Smith et al. 2007). Investigations of people’s performance in 
the  secretary  problem have been conducted, for instance, by Dudey and Todd 
(2001) and Lee (2006). Finally, in deferred decision tasks, searchers have to 
decide whether to continue information search (e.g., conduct another test) or to 
stop search and make a diagnosis about a situation (e.g., which of two diseases 
a patient has). Models of stopping rules to describe people’s search behavior in 
such a task have been tested, for instance, by Busemeyer and Rapoport (1988; 
see also Browne et al. 2007).

Is There Evidence for Similar Stopping Rules 
across Different Types of Search?

As mentioned above, in many situations the determination of  optimal stopping 
rules will exceed the cognitive capacities of an organism. In such situations, 
decisions to stop will need to be based on heuristic principles which can, un-
der some circumstances, approximate the optimal solutions. Given that the 
need to decide when to stop search is relevant across many different tasks, we 
must ask whether similar heuristics for stopping search may be used across 
various domains. Although only very few studies have directly compared stop-
ping behavior in different search tasks, the existing evidence hints at some 
commonalities. Comparing  patch-leaving rules—akin to stopping rules at the 
patch level—in  spatial and memory search, an interval-based rule (specifi cally, 
time since the last encountered item) accounted in both tasks for the data best 
(Hutchinson et al. 2008; Wilke et al. 2009). Similarly, fi ndings suggest that 
people’s decision to terminate retrieval from memory is a function of the num-
ber of retrieval failures, which is usually highly correlated with the temporal 
interval since the last retrieval (Harbison et al. 2008).

Process Tests of Stopping Rules in Decision Making

How can people’s stopping behavior be studied and measured? Whereas search 
in memory is usually not directly observable, decision-making paradigms have 
been developed that enable tracking of  external information search (for an 
overview, see Schulte-Mecklenbeck et al. 2011). In multi-attribute decision 
making, where people have to search for attributes to evaluate the alternatives, 
process tracing methodologies such as  Mouselab (Payne et al. 1993) or eye-
tracking have been used to test how people stop search. For instance, according 
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to the take-the-best heuristic (Gigerenzer and Goldstein 1996), alternatives are 
compared by sequentially inspecting their attributes (in the order of their valid-
ity or importance for this decision) and stopping that search and inspection as 
soon as the alternatives differ on an attribute. Thus, to infer which of two cities 
has more inhabitants, take-the-best starts by comparing the cities on the high-
est validity attribute (e.g., whether it is a state capital): if both cities have the 
same value on that attribute (e.g., if neither is a state capital) then the second 
most valid attribute is inspected (e.g., whether the city has an international 
airport). If this attribute discriminates (e.g., if only one of the two cities has an 
international airport), search is stopped and no further attribute is inspected. 
Using the Mouselab experimental tool, several studies have shown that peo-
ple’s stopping behavior indeed follows such a simple rule when information 
costs are high (Bröder 2003), there is time pressure (Rieskamp and Hoffrage 
2008), cognitive resources are limited (Mata et al. 2007), or the number of 
alternatives is high (Ford et al. 1989). More recently, Khader et al. (2011) de-
veloped a neuroimaging paradigm that allows tracking the neural correlates of 
information search in memory-based decision making. The authors obtained 
evidence that people using  take-the-best show reduced retrieval activity in the 
brain areas representing attribute knowledge when the heuristic stops search 
early as compared to when the heuristic searches more extensively. Pachur and 
Scheibehenne (2012) used a sequential  sampling paradigm to show that when 
pricing a lottery, people stopped information search about the lotteries differ-
ently depending on whether they were asked for a maximum buying price or a 
minimum selling price.

Open Questions

Most search situations that are investigated in empirical studies are relatively 
artifi cial. It is not clear whether tasks studied in the laboratory make search 
more or less diffi cult compared to more natural search situations. On one hand, 
experimental search contexts usually do not offer as much information to 
help navigate the search process as more natural search environments. On the 
other, search environments outside the laboratory are also more complex, for 
instance because the target object is less well defi ned (e.g., fi nd an appropri-
ate partner to start a family), or because the search process is more diffi cult to 
control. Consequently, researchers need to study search and stopping rules also 
in real-world domains.

Individual Differences in Cognitive Search

The  effi ciency  of an individual’s adaptive control, in general, and of searching 
for objects, memory traces, and problem solutions, in particular, is known to 
vary with intelligence, operation span, and age. For instance, the development 
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of people’s performance in visual search tasks across the life span shows an in-
verted U-shaped trajectory (Hommel et al. 2004). Older adults have particular 
problems with excluding irrelevant distractors; they seem to recheck more of-
ten when a target is absent. Interestingly, the opposite tendency is observed in 
decision making: older adults seem to search for less information than younger 
adults when making a decision (Mata and Nunes 2010). Nevertheless, older 
adults still show a general ability to adapt their  information search to the struc-
ture of the environment. When a more extended search affords better deci-
sions, older adults acquire more information than when extended search pays 
only little (Mata et al. 2007). This suggests that elderly people actively employ 
context-specifi c search control strategies, presumably to compensate for (real 
or assumed) effects of age-related cognitive decline.

Although investigations of search behavior in decision making have found 
evidence for the use of a considerable variety of strategies, variation in strategy 
use seems to be due primarily to external factors, such as time pressure and 
the statistical structure of the task, with individual differences playing only a 
minor role (Bröder 2011). There are, however, some exceptions. In addition 
to the age differences described above, search strategies in decision making 
have been shown to differ reliably as a function of expertise. For instance, 
Garcia-Retamero and Dhami (2009) found that crime experts (burglars, police 
offi cers) tend to follow a strategy with simple search and stopping rules ( take-
the-best) to judge the security of a property, whereas novices (students) tended 
to follow a strategy involving more extensive search (see also Shanteau 1992).

To the extent that search is associated with a person’s willingness to take 
risks, there is some evidence for gender differences in search. For instance, in 
a task where extended search increased gains but also the risk of a large loss, 
young male participants were more willing to take risks and to search longer 
than female participants (Slovic 1966). In addition, individual differences in 
 motivation or persistence may lead people to stay engaged versus disengage 
from search (Dougherty and Harbison 2007).

Associations between control processes and working memory (as measured 
by operation-span performance) suggest that individual differences in search 
might also be related to individual differences in working memory. The infl u-
ence of working memory on search seems to be due, in particular, to operation-
al capabilities (i.e., manipulating material stored in working memory) rather 
than to storage capacity (i.e., the number of items that can be stored). Standard 
measures of  working memory, such as the operation-span task, reading span, 
listening span, and symmetry span, rely on a process-versus-maintenance dis-
tinction: participants are asked to maintain a growing list of to-be-remembered 
items simultaneously while engaging in a processing task. In the operation-
span task, for example, participants are presented with a list of letters seri-
ally (one at a time), with a simple mathematics problem interleaved between 
each successive letter presentation. Performance on the operation-span task is 
given by the number of letters correctly retrieved across multiple sequences of 
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to-be-remembered items. Individuals high in operation span show advantages 
in rejecting irrelevant information in memory and search-like tasks (e.g., Vogel 
et al. 2005) and in the  attentional blink (Colzato et al. 2007). This might be 
due to the fact that both operation span and age have an impact on a person’s 
ability to distinguish between signal (i.e., targets) and noise (i.e., distractors). 
Indeed, older adults seem to spend more time sampling sensory evidence to 
achieve a reliable signal-to-noise ratio than young adults (e.g., by engaging 
in more rechecking operations to make sure that the signal actually belongs 
to the searched object; Hommel et al. 2004). However, it is currently unclear 
which search behavior fosters a high signal-to-noise ratio. On one hand, hav-
ing a reliable signal-to-noise ratio might reduce cognitive confl ict (because 
relevant items and distractors can be better distinguished) and therefore foster 
exploitation. On the other, a higher signal-to-noise ratio will also increase the 
sensitivity to detect confl ict signals, which should foster exploration. Overall, 
individual differences in the adaptivity of switching between exploration and 
exploitation can be due to both  perceptual abilities to detect (external or inter-
nal) signals to switch and the ability to perform the switch (cf. Mayr 2001).

Engle and colleagues have found that an individual’s working memory span 
predicts aspects of their performance on longer-term memory search tasks, 
such as  free recall. Unsworth and Engle (2007) suggest that these differences 
are related to the diffi culty of individuals with low working memory span to 
use cues effectively to constrain memory search (resulting in more intrusions 
from prior lists and fewer correct retrievals). Recent work suggests that more 
strategic aspects of search show reliable individual differences: people who 
tend to organize recalled items with a temporal strategy reliably recall more 
items than individuals whose recalls are temporally disorganized (Sederberg 
et al. 2010).

There is also some evidence for individual differences in visual search 
resulting from cultural infl uences. Specifi cally, Nisbett and colleagues (e.g., 
Nisbett and Miyamoto 2005) found that Asians, who show a more collectivist 
orientation, are more sensitive to context information, and thus seem to have a 
more  divergent search behavior, than individually oriented Westerners. Similar 
attentional biases have also been found as a function of religious orientation 
(Colzato et al. 2010b), suggesting that cultural practices might shape the way 
individuals confi gure their cognitive system for search operations.

Future Directions

In our discussion of the cognitive mechanisms underlying search, we distin-
guished three different aspects of search: the  initiation of search, the  mainte-
nance of search, and the  termination of search. We discussed commonalities 
and differences between different types of cognitive search tasks (e.g., visual, 
memory, spatial, action search), potential proximate mechanisms, as well as 
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individual differences in search. Although several experimental paradigms 
have been developed to investigate the cognitive processes during the different 
stages in search, little is known about how these processes are implemented 
and biologically mediated. There is evidence that some search behavior is 
linked to  dopamine (e.g., for an overview, see Hills 2006; Hills, this volume), 
yet to what degree does this link hold across different domains (such as search 
in memory, visual search, spatial search, and search for actions)? Moreover, 
the mechanisms underlying an individual’s adaptive use of different search 
strategies (e.g., to compensate for age-related decline) are not well understood, 
nor are the mechanisms that drive cultural infl uences on the control of cogni-
tive search.

An important application of research on cognitive search may lie in devel-
oping methods to train individuals to change their search behavior (e.g.,  brain 
training), for instance, to be more fl exible in switching (exploration or inno-
vation) or more persistent in concentrating (exploitation or focus). Important 
questions here include how long the training effects last (long-term or short-
term), and whether they transfer from one domain to another (for evidence, 
see, e.g., Karbach and Kray 2009; Hills et al. 2010b).

Sherlock Holmes’ adventures offer some inspiration for hoping that people 
can be trained to adopt different search methods in some instances. Holmes 
often attempted to instruct Watson about his investigative methods in search-
ing for clues and solutions to puzzling mysteries. Even though this was not 
always a success, in The Disappearance of Lady Frances Carfax, Holmes and 
Watson’s search ends successfully as they manage to fi nd the Lady, at the mer-
cy of Shlessinger, just in time before he could bury her alive.
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