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Abstract

A Bayesian-based model for lexical decision, REM-LD,
is fit to data from a novel version of a signal-to-respond
paradigm. REM-LD calculates the odds that a test item is
a word, by accumulating likelihood ratios for each
lexical entry in a small neighborhood of similar words.
The new model predicts the time course of observed
effects of nonword lexicality, word frequency and
repetition priming.

Introduction
It is generally assumed that the understanding of the
skill of reading should be based in part on an
understanding of the storage and retrieval of words.
These processes are often studied through the use of the
lexical decision task, requiring  participants to
distinguish words (e.g., CHAIR and FUME) from
nonwords (e.g., GREACH and ANSU). In tasks in
which accuracy is near ceiling, three critical findings
are seen in the response times: (1) The word frequency
effect. Words that occur regularly in natural language
(high frequency or HF words such as CHAIR) are
classified correctly faster than words that occur
relatively rarely (low frequency or LF words such as
FUME). (2) The repetition priming effect. Prior
exposure to a word leads to faster correct classifications
for that word on a second presentation. This increase in
performance is particularly pronounced for LF words
(e.g., FUME benefits more from prior exposure than
CHAIR). (3) The nonword lexicality effect. Nonwords
that look like words (e.g. GREACH) take longer to be
classified correctly than nonwords that are relatively
dissimilar to words (e.g. ANSU). In this article1, we use
a new variant of a signal-to-respond procedure that
produces findings in the accuracy domain that mimic
those listed above for response times.  We will fit a new
Bayesian model, REM-LD, to the data. The advantage
of the signal-to-respond technique is that it allows one
to track the time course of processing, obtaining
                                                            
1 More details and related research can be found in
Wagenmakers (2001).

multiple data points for each stimulus category while
reducing concerns about higher order task strategies
and speed-accuracy trade-off’s.

Experimental Data
The signal-to-respond paradigm has occasionally been
applied to lexical decision (Antos, 1979; Hintzman &
Curran, 1997). We used our new version of the signal-
to-respond paradigm to  replicate and extend
Experiment 2 from Hintzman and Curran (1997).

Method
We used four types of stimuli: (1) 168 HF words, each
occurring more than 30 times per million according to
the CELEX lexical database (Burnage, 1998) (2) 168
LF words, each occurring 1 or 2 times per million (3)
168 pronounceable nonwords created by replacing one
letter of an existing word (e.g., GREACH created from
PREACH) (4) 168 pronounceable nonwords differing
by at least two letters from any word (e.g., ANSU; this
condition was absent in the Hintzman and Curran
study). The first three stimulus categories were matched
on neighborhood structure (i.e., a neighbor is a word
differing from another word in one letter, so TIED is a
neighbor of LIED); These categories had the same
summed logarithmic word frequency of the neighbors.
Stimuli were presented twice to study how prior
exposure affects performance. To control for practice
effects and shifts in response criteria, we presented
stimuli in blocks of 48 trials, half of which were stimuli
that were encountered in the previous block, half of
which were new. Each block contained 24 words and
24 nonwords. Subjects were required to respond at six
different lags: 350, 400, 450, 500, 550, and 600 ms. The
appropriate lag was indicated to the subject by means of
three tones (see Figure 1a). The tones were equidistant
in time, and the onset of the third and last tone
coincided with the onset of the stimulus. The subject
had to respond at the fourth imaginary tone. We
adopted this procedure in the hope that it would
produce less interference than the presentation of a tone



during processing. After each trial, subjects received
feedback concerning the accuracy and latency of their
response relative to the desired latency.

Results and Discussion
Forty-three students at Indiana University participated.
we excluded 14 participants from the analyses because
of extremely bad performance or bad timing.  Figure 1b
and 1c show the distribution of response times for a
subject with good and bad timing, respectively. All
response latencies were grouped into six bins for each
subjects separately, the first bin containing the 16.7%
slowest responses, and so forth. Next, the accuracy data
from each bin were averaged over subjects. Other
analyses such as binning by actual response latency or
analyzing accuracy data by lag yielded similar results.
The results can be seen in Figure 2. Performance for HF
words is better than for LF words, and performance for
nonwords that differ from any word in two letters (i.e.,
NW2) is better than for nonwords that differ from a
word in one letter (i.e., NW1). Repeated stimuli
(indicated by open symbols) are more likely to be
classified as ‘word’ than new stimuli (indicated by the
filled symbols), an effect larger for LF words than for
HF words. As expected, performance increases
dramatically with processing time, except perhaps for
new LF words. This lack of increase could either be due
to a very slow retrieval process for LF words, or to the
possibility that some subjects might be uncertain
concerning the lexicality of some LF words. One might
argue that the gain in performance for repeated LF
words reflects a retrieval of the feedback given on the
earlier presentation (‘I remember this stimulus is
supposed to be a word’). However such a memory
process would lead to improved performance for
repeated nonwords (‘I remember this stimulus is a
nonword’), whereas the data show a decrease in
performance for repeated nonwords. The hypothesis
that repetition priming involves two distinct processes

(i.e., familiarity and recollection) will be elaborated
upon in the Discussion. Overall, the data consistently
show effects of processing time, nonword lexicality,
word frequency and repetition priming.

The REM-LD Model
The REM-LD model is similar to the REM model for
episodic recognition (Shiffrin & Steyvers, 1997). In
episodic recognition, participants have to distinguish
‘old’ words (i.e., words that were presented in a
previous study list) from ‘new’ words. The REM-LD
model is an application of the REM model to the lexical
decision task. In the REM-LD model, we will make the
following assumptions.

(1) Words and nonwords can be represented by
vectors of feature values. We assume that these features
arbitrarily represent attributes such as orthography and
phonology. Here we represent each word by a
collection of 30 features with values 1 to 10 randomly
drawn from a uniform distribution.

(2) Words have lexical entries (i.e., representations)
in memory whereas nonwords do not. The presentation
of the probe (i.e., the stimulus) leads to activation of n
lexical entries that are orthographically similar to the
probe (see Figure 3a). In a more complete model the
value of n would probably be smaller for tests of
dissimilar nonwords (i.e., nonwords that differ in two
letters from any word), but for simplicity we set n=10
for all test items and instead vary the feature similarity
for dissimilar nonwords. In case the probe is a word,
one of the activated lexical entries is the probe (denoted
s-entry for ‘same’, e.g. BEG in Figure 3a). The other
activated entries are similar but different from the probe
(denoted d-entries for ‘different’). Note that a nonword
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Figure 1. (a) the signal-to-respond procedure. (b)
response time distributions for a participant with good
timing and (c) for a participant with bad timing.
Matching line-colors indicate correspondence between
lag (vertical line) and response distribution.
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Figure 2. Results of the signal-to-respond lexical
decision experiment. The observed data is indicated
by the symbols while the REM-LD model fit is
indicated by the solid lines (stimuli presented once)
and dashed lines (stimuli presented twice).



can only activate lexical entries that are similar to it,
since nonwords do not have lexical representations.

The degree of similarity between the probe and the

entries is determined by the probability that the same
feature value is present in probe features as in features
from the lexical entries. Stored s-entry features will
match the probe features with probability β1; stored d-
entry features will match the probe features with
probability β2, where β2 < β1. With probability 1-β,
feature values in the entries can differ from those in the
probe. These feature values are obtained by sampling
randomly from the uniform feature distribution,
enabling matches to occur by chance. In the
experiment, the similarity between the probe and the
lexical neighbors was equated for NW1, LF and HF
stimuli. However, the NW2 stimuli were more
dissimilar from their lexical neighbors because they
differed from any word in at least two letters.
Therefore, we set β2(NW2) < β2(NW1) = β2(LF) =
β2(HF).

In REM-LD we assume that word frequency is
represented by parameter β1; the probability of a probe
feature matching a trace feature is assumed to be higher
for HF word probes than for LF word probes. The
increased matching probability for HF words might
involve various mechanisms such better matching
context features because HF words occur in many
different contexts. Alternatively, features from HF
traces might be retrieved at a faster rate than features
from LF traces. Therefore, we set β1(LF) < β1(HF). In
sum, the β1 parameters determine the similarity or
degree of overlap between a word probe and its
corresponding lexical entry whereas the β2 parameters
determine the amount of overlap between the probe and
lexical entries that are most similar to it.

(3) Mistakes in this task are made because the
comparison process of the probe to the activated lexical
entries is noisy. The function α(t) gives the probability
that a feature from a lexical entry is retrieved correctly

at time t, in order to be compared with a probe feature
(if it is not retrieved correctly at time t, the value
retrieved is obtained by sampling from the uniform
feature distribution so that it can still match by chance).
To account for the improvement in the lexical decision
task as a result of more processing time, we assume that
the function α(t) is monotonically increasing over time
according to:

( )01)( ttbet −−−=α

where b and t0 are parameters of rate and starting point.

(4) The decision to respond ‘word’ or ‘nonword’ is
based on an assessment of the evidence that the
activated set of lexical entries contains an s-entry. An
optimal decision is based on the odds φ that the probe is
a word rather than a nonword, given the available data
D: φ = P(w|D) / P(nw|D) where the data consists of the
number of matches and mismatches between the probe
features and the features of all activated lexical entries.
Figure 3c illustrates typical log φ distributions
generated by word and nonword probes, also
illustrating the fact that log φ = 0 is the optimal
response criterion. By Bayes’ rule,
φ = [ P(D|w)P(w) ] / [ P(D|nw)P(nw) ]. Because in our
experiment the prior probability of the probe being a
word, P(w), equaled the probability of the probe being a
nonword, P(nw), we have:
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When the probe is a word, there is an equal probability
that any activated lexical entry is a s-entry. This can be
used in a simple derivation (Shiffrin & Steyvers, 1997)
that leads to:
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where mj is the number of matching features in the
comparison of the lexical entry j to the probe. The
terms s j and dj represent the assumptions that the lexical
entry j is a s-entry and d-entry respectively. Therefore,
the odds for word is an average of the likelihood ratios
for each of the lexical entries in the activated set. We
can calculate each likelihood ratio in the following way:
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In this equation, v is the number of distinct values from
the uniform feature distribution (always 10 here) and k
is the number of features (always 30 here). The
calculations of the system are partly based on the
estimates 1̂β and 2β̂ . These system estimates are based
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Figure 3. (a) a presented letter string activates n
orthographically similar lexical entries. (b) letter
strings and lexical traces are represented by vectors.
(c) the distribution of log(φ) for two conditions.



on an arithmetic average of the different values that β1

and β2 can take on in the different experimental
conditions. The calculations of the system also depend
on an estimate of α(t), the time course of retrieving
features from the entries. In other words, the system
weighs the diagnosticity of the evidence with
processing time. We are currently exploring alternative
models that incorporate different assumptions.

(5) Prior exposure to a word primes the corresponding
lexical entry. Therefore, the features of a repeated word
probe will better match the features in the corresponding
lexical entry. We model this by assuming that β1  is
increased by a small amount ∆β for repeated word
probes. Similarly, prior exposure to a nonword primes
the lexical entry of the word that is most similar to it.
Therefore, the second occurrence of the nonword string
will lead to more matching features in the comparison of
the repeated nonword probe and the most similar lexical
neighbor. We model this by increasing β2 for one lexical
entry by the amount ∆β for repeated nonword probes.

Simulation results
Figure 2 shows the results of a quantitative model fit of
the REM-LD model to the observed data involving seven
free parameters. The mean squared error (MSE) of the fit
is 7.74e-004. The values of the seven parameters values
found to produce the predictions  were: β1(LF)=.674,
β1(HF)=.832, β2(NW1)=.398, β2(NW2)=.359, ∆β=.079,
t0=330, b=0.0051. The qualitative predictions were found
to be  relatively robust against variations in these
parameter values. Because accuracy for HF words is
higher than for LF words, β1(HF) was set higher than
β1(LF) so that lexical probes would match their lexical
entries better for HF words than LF words. Because
NW1 nonwords are more often mistakenly judged to be
words than NW2 nonwords, β2(NW1) was set higher than
β2(NW2) so that a NW1 probe would activate its similar
lexical neighbors to a greater extend than a NW2 probe.
For both word and nonword conditions, probes that are
repeated are classified as ‘word’ more often then probes
encountered for the first time. The model predicts this
because a repeated word probe primes the corresponding
lexical entry while a repeated nonword probe leads
primes the lexical entry of the word that it is most similar
to. The model also predicts that the repetition priming
effect is more pronounced for LF words than for HF
words. This is because the average value of log φ is
closer to zero for the LF words than for the HF words.
Hence, an identical increase in log φ due to activation of
the episodic trace will have a greater impact on
performance for LF words than for HF words.

Discussion
We have shown that a Bayesian-based model, REM-
LD, can predict lexical decision effects such as word
frequency, repetition priming, and nonword lexicality.
This model takes into account the similarity of
nonwords to words, thereby keeping the system
‘centered’ around the optimal criterion of log φ of zero.
REM-LD can also handle the observed improvement in
performance with processing time. In contrast to most
extant models and empirical work in lexical decision,
we focused on changes in accuracy over time, as seen
in a variant of a signal-to-respond procedure. A
Bayesian model is particularly suited toward explaining
data from the signal-to-respond paradigm, since the
system bases it decisions on the diagnosticity of the
evidence, simultaneously considering the evidence for
and against the ‘word’ response. When, early in
processing, the evidence is noisy and supports neither
the ‘word’ response nor the ‘nonword’ response,
performance is at chance. Empirically, the most
interesting finding is the decrease in performance for
repeated nonwords. The current model assumes prior
exposure of a nonword primes the most similar
activated lexical entry, predicting the observed
decrement in performance. However, with subject-
paced responding, an increase in performance for
repeated nonwords is sometimes observed (Logan,
1988). Therefore, it is possible that the net result of
repetition priming for nonwords is the sum of two
opposing effects: (1) An implicit priming  component
such as modeled by REM-LD, leading subjects to give
the erroneous ‘word’ response, and (2) A recollection
component that leads subjects to remember the correct
‘nonword’ response. This recollection process might be
operative when subjects are under less pressure to give
speeded responses, such as in experiments in which
responding is subject-paced (e.g., Wagenmakers, 2001).
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