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A general framework is presented for concept identification based on hypothesis-testing theory. 

It is a modification of the duoprocess theory presented by Chumbley (1972). It is shown how 

Markov models for various complex concept identification tasks may be derived from this 

framework and how such models may be analyzed by making use of probability generating 

functions. Two experiments are described. In experiment 1 three tasks were used: two simple 

tasks, where the subject either only had to select the relevant dimension in order to solve the 

problem or only had to learn a short list of paired-associates, and a more complex task, where 

both processes were needed to reach the solution. The results were in general favorable to the 
theory. Experiment 2 was designed to test the application of the theory to the four-choice con- 

cept problem. The predictions of the theory are compared to those of the subproblem learning 

theory of trabasso and Bower (1964), modified to include a ‘learning-on-errors’ assumption. 

The fit of the duoprocess theory was reasonably good and superior to that of the subproblem 

learning theory. 

Introduction 

Concept identification refers to the learning of a rule which maps stim- 
uli onto response-categories (cJ: Hunt 1962; Millward and Wickens 
1974). It is a human analogue to animal discrimination learning. De- 
spite this close relationship between human and animal discrimination 
learning the theoretical developments in these two areas have in general 
proceeded quite independently (e.g. Levine 1969; Brown 1974; Lovejoy 
1968; Sutherland and Mackintosh 197 1). In this paper we will be con- 
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cerned exclusively with human discrimination learning. The stimuli that 
are used in these tasks are usually supposed to be dimensionally struc- 
tured, that is: every stimulus can be fully described by its values on a 
number of (possibly subjective) dimensions. 

In most cases the experimenter is able to control the subjective 
dimensions by using stimuli with obvious dimensions or by telling the 
subjects which dimensions are to be considered. Thus, the stimulus 
dimensions are assumed to be separable (Garner 1976). These dimen- 
sions may be partitioned into rcle~a~ and irrelewzt dimensions: rele- 
vant dimensions are involved in the categorization rule, irrelevant 
dimensions are not involved in this rule. That is, relevant dimensions 
control the correct mapping of stimuli onto categories. 

In principle, there is quite a variety of possible categorization rules 
(see Hunt 1962; Haygood and Bourne 1965). Two of the most fre- 
quently used types are (1) one-dimensional or affirmative rules and (2) 
conjunctive rules. Affirmative rules are the most common. In the proto- 
typical experiment there are a number of binary dimensions (e.g. color, 
size, shape etc.) and one of these controls the mapping. For example, 
if A and B are the two values on the relevant dimension, the rule might 
be as follows: all stimuli that have value A on the relevant dimension, 
should be put into category 1, all stimuli that have value B, into cate- 
gory 2, or schematically: 

A+ 1 B-2 

This particular type of task will be referred to as the standard task. 
Although this type of concept identification task is by far the most 

commonly used one, it is possible to use dimensions with more than 
two values or to use more than two response-categories. For example, 
possible one-dimensional rules are: 

A-l A-+1 A-l 

B-+2 B-+2 B+ 1 A+ 1 or2 

c-3 c-+2 c+2 B+3or4 

D-4 D+2 D-t? 

In the conjunctive case there are two relevant dimensions which must 
be used simultaneously. Again, binary dimensions are most commonly 
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used. Conjunctive rules usually refer to tasks of the following kind: 

A,A,-1 B,A,+2 

A,BZ + 2 B,Bz + 2 

where Ai and Bi are the two values on dimension i. Category ‘1’ corre- 
sponds to the response ‘Yes, this is an instance of the concept’. The 
other category corresponds to the response ‘No, this is not an instance’. 
Another type of conjunctive rule is the so-called ‘four choice concept 
problem’: 

AlAz -+ 1 BIAz + 3 

AIBz + 2 B,B, -+ 4 

A variety of theories and models have been proposed to explain the 
behavior of subjects in solving such concept-identification problems, 
most of them based on the notion that subjects select and test hypoth- 
eses about the correct rule. Based on the work of Lashley (1942) and 
Krechevsky (1932), models of this kind were proposed by Restle 
( 1962), Bower and Trabasso ( 1964; see also Trabasso and Bower 1968), 
Levine (1966, 1969) and others (see Brown (1974) for a review of this 
work). This hypothesis-testing theory has been tested quite throroughly 
in the case of the standard task and has survived these tests remarkably 
well (Brown 1974; Levine 1969, 1975; Trabasso and Bower 1968). 

One important limitation of these models however is that they have 
been developed only for the standard concept identification task. 
Almost no attempt has been made to extend hypothesis-testing theory 
to other experimental paradigms. In this paper we will present a general 
framework for concept identification based on hypothesis-testing the- 
ory in which mathematical models can be developed in a relatively 
straightforward manner for any kind of task (including the ones 
described earlier). This extension of the theory is important because it 
is a much more stringent test of the theory. 

The present theory is a modification of the duoprocess theory as 
presented by Chumbley (1972). Both Chumbley’s original version of 
the duoprocess theory and the present one are extensions of the Bower 
and Trabasso (1964) model for concept learning. The duoprocess the- 
ory assumes that two processes may be distinguished in the learning of 
conceptual classifications: 
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(a) a dimelzsiolz-selectiorz process (to find the relevant dimension(s)), 
and 

(b) an associative process (to learn which category goes with.which 
value(s) on the selected dimension(s)). 

These two processes are assumed to be hierarchically related all-or-none 
processes. It is assumed that a subject selects a new hypothesis or 
dimension after ‘infirming errors’. An infirming error is defined as the 
result of one of the following two events: 

(1) A stimulus is presented which the subject has associated with a 
response-category, and this response is not correct. 

(2) The correct response is a response which is associated with one of 
the values on the selected dimension (or with one of the combina- 
tions of values on the selected dimensions, e.g. in conjunctive rules), 
and the stimulus that was presented did not have that value (or that 
combination). 

The difference between our model and Chumbley’s model lies in this 
definition of an infirming error. Chumbley (1972: 19) defines an 
infirming error as an error that disconfirms the first learned association 
(the ‘hypothesis response’ in his terminology), the association that is 
learned upon selection of a new hypothesis concerning the relevant 
dimension(s). In our model every error that disconfirms any of the 
learned associations is an infirming error. Thus, in our model the sub- 
ject is assumed to behave somewhat more efficiently since he will 
sooner reject an incorrect hypothesis. 

This modification of Chumbley’s duoprocess theory has rather dras- 
tic consequences on the mathematical structure of the model. More- 
over, Chumbley’s analysis leads to inconsistencies when applied to con- 
junctive concept identification tasks. This is a consequence of the fact 
that his process model does not specify what the subject does when he 
gets a feedback that does not contradict the hypothesis response, but 
that does contradict one of the other learned associations. Chumbley 
(1972: 23) represented his version of the duoprocess theory as an 
absorbing Markov chain. For example, in the case of the four-choice 
concept problem the transition matrix is given by eq. (1) (where the 
error and correct states have been collapsed). 
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L PAL2 PAL1 AI 

- L 1 0 0 0 

PAL2 a/2 

L 0 

1 - a/2 0 0 

PAL, 3a/4 1 - 3a/4 0 

AI 0 0 qic 1 - qic 

I.V. = [O 0 0 11 

P(C) 

1 

314 

i 1 l/2 

1-q 

(1) 

In this equation AI is the state prior to selection of the relevant pair of 
dimensions, PAL, and PAL2 are the states where the subject is in when 
he has selected the two relevant dimensions and has formed resp. one or 
two associations, and L corresponds to the state where learning has 
been completed (note that PAL3 and PAL4 are combined into a single 
state L, since these two states cannot be distinguished). a refers to the 
probability of learning a particular value-response association, q to the 
probability of an error in state AI, i to the conditional probability that 
an error is an infirming error, and c refers to the probability of selecting 
the relevant pair of dimensions. The difficulty with this model is that 
the probability of an error in state AI (q) is not independent of the 
trialnumber (given the assumptions of the duoprocess theory). 

Moreover, Chumbley’s version of the duoprocess theory specifies 
that prior to selection of the relevant pair the subject may hold either a 
hypothesis based on two irrelevant dimensions or a hypothesis based on 
one relevant dimension. It can be easily shown however that these two 
states cannot be lumped into a single AI-state (see Green0 and Steiner 
(1964) for a definition of lumpability). Thus, eq. 1 is not a correct 
representation of the process model specified by the duoprocess theory. 

Both Chumbley’s version of the duoprocess theory and the present 
version assume that after non-infirming errors (the kind of errors that 
may be made after selection of the relevant dimension(s)) the subject 
does not resample. The present theory assumes than when the subject 
selects a dimension, he forms a locally consistent (partial) hypothesis. 
This hypothesis specifies one or more dimensions as the relevant one(s) 
and assigns the response-category specified by the just received feed- 
back to the current value on the selected dimension. For example, sup- 
pose that the stimulus presented is a yellow square, the correct category 
is B, the subject makes an infirming error, and he selects color as the 
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hypothcsizcd solution ctiincnsion. In that cast it is assunicct that hc wilt 
assign category ‘13’ to ttic ctimcnsion-value ‘yellow’. ‘I‘hus, his (partial) 
Iiypotlicsis is locally consistent ((;rcgg and Simon 1907): it is consis- 
tent with the just obtaincd t‘ccdback. 

Learning of the remaining associations is assumed to occur in an alt- 
or-none nianncr, wilh constant probability of tcarning on every trial 
whcrc an “untcarncct” stimulus (i.0. ;I stimulus for which the currcnI 
Iiypothcsis dots not specify ;I particular rcsponsc-category) is prcscntect. 
If a stimulus is prcscnlett which is mmciatcd with a rcst,onsc-category, 
tlic sut>.jcct wilt give that rcsponsc. Ollicrwisc tic wilt sctcct at ranttonl 
one of the “untcarncd” rcsponsc-catc~ories (i.0. rcst,onsc-catcgorics 
which tiavc not ycl hccn associatctt to one 01‘tllc vatucs on the sclcctcd 
ctirncnsion). t:inalty it is assuriicd that the probability of selecting 2 par- 
ticular dinicnsion is, as in tllc original thwcr and ‘I‘rabasso tnottcl, 
dctcrrnincd by tlic weight (or 3Ltcntion value) of that ctimcnsion. t:ig. 1 
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gives a schematic depiction of the proposed processing stages. 
This may be clarified by an example. Suppose that subjects must 

learn the following rule: 

red +l yellow -+ 3 

green -+ 2 blue + 4 

It is assumed in this and all the following cases that the subjects know 
the type of rule, that is, they are instructed that every value on the rele- 
vant dimension is paired with exactly one response-category. At the 
start of the task, the subject receives the following information: red 
circle -+ 1. He now selects “form” as the relevant dimension and forms 
the tentative (locally consistent) hypothesis: circle -+ 1. The next stim- 
ulus is a yellow triangle. The subject now guesses 2, 3 or 4. In this case 
he may make an error (with probability 2/3), but that does not signify 
that his dimension was not the correct or relevant one. After receiving 
feedback he learns with probability a the association triangle + 3. Sup- 
pose the next stimulus is red square. The subject guesses 2 or 4 and 
receives the information red square -+ 1. Now he has made an infirming 
error: he knows that circles are 1 and since the rule is one-one, squares 
cannot be 1 too. Another possibility for an infirming error is when the 
stimulus presented is a blue triangle. In that case, he would make the 
response ‘3’ and get the feedback ‘4’. This would also tell him that his 
hypothesis cannot be correct since triangles cannot be both 3 and 4. In 
both cases he would select a new dimension and start all over again. 

This revised version of the duoprocess theory extends hypothesis- 
testing theory to many, more complex, concept identification tasks. In 
particular, it generates models for all of the concept identification tasks 
discussed earlier. It should be noted that the duoprocess theory reduces 
to the Bower and Trabasso model when applied to the simple, standard 
concept learning task (see also Cotton 197 1, 1974). It differs from sev- 
eral other concept-identification models for the standard concept task 
in that it is assumed that dimensions are sampled, not fully specified 
hypotheses (i.e. color is sampled, not the hypothesis yellow -+ 1, 
red + 2). In the simple task, dimensional sampling is equivalent to the 
condition known as ‘local consistency’ (Gregg and Simon 1967). It 
should be noted however that our assumption of dimension-sampling is 
consistent with the results reported by Gumer and Levine (197 1) and 
Gholson and O’Connor ( 1975). 
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In the remainder of this paper we will show how specific mathemati- 
cal models may be derived from this general framework for specific 
experimental tasks. We will also present some experimental data sup- 
porting the theory. 

Experiment 1: affirmative rules 

The purpose of this experiment was to separate experimentally the two processes 
proposed by the duoprocess theory, dimension-selection and association-learning. 
There were three conditions in this experiment. The first condition was a pure 
dimension-selection task, the second a pure associative learning task, while the third 
task required both dimension-selection and association-learning. We will first 
describe the tasks and the mathematical models derived from the duoprocess theory 
for those tasks. 

(u) Condition 1 

In condition 1 Ss had to solve a simple concept identification problem, i.e. a two- 
category task with binary dimensions where the solution is based on a single dimen- 
sion. The duoprocess theory specifies that the Markov chain given in eq. (2) 
describes the error-correct sequences. It is a slight modification of the Bower and 
Trabasso model, due to the fact that on the initial trial (trial 0) no response had to 
be given. It is assumed that Ss select their first dimension at the end of this initial 
trial. 

L IS IE 

L 10 

r 

0 

IS 0 ; + 

IE c (1 -43 (1 -c,; 1 

(2) 

I.V. = [c (1 -c)$ (1 4;1, 

where L is the state where the S has selected the relevant dimension and makes no 
more errors, and IS (IE) is the state where the S has selected an irrelevant dimen- 
sion and makes a correct (wrong) response. In this case, every error is an infirming 
error, so that a new dimension is sampled after every error. As in the Bower and 
Trabasso theory it is assumed that c, the probability of sampling the relevant 
dimension, is equal to the relative weight of that dimension: 

w 
c=Y (3) 

X Wi 

This model for the simple, standard concept task was analyzed and tested exten- 
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sively by Bower and Trabasso (1964) and Trabasso and Bower (1968), with gener- 
ally favorable results. Predictions for relevant statistics may be found in several 
sources (e.g. Polson 1970). 

(b) Condition 2 

In the second condition Ss were presented a kind of paired-associate learning task. 
Every dimension had four values on it and there were four response-categories. Ss 
were told which dimension was the relevant one, so they only had to find out 
which value on that dimension was paired with which response-category. According 
to the duoprocess theory described above the following Markov model should be 

appropriate for this task: 

L RzS RaE RiS RiE 

0 0 0 0 

(1 --$2 (1 -y,+ 0 0 

(1 -+ (1 -a,; 0 0 

(1 -4)& (1 -4,; 

(1 -a)$ (1 -a$ 

(4) 

In eq. 4, RiS (RjE) is the state where j associations have been learned and a correct 
(wrong) response is made. In state L no more errors are made. Note that our 
assumptions imply that this will be the case as soon as three associations have been 
learned. In eq. 4, a denotes the probability that an association will be learned given 
an opportunity for learning. Of course in this case none of the errors is infirming. 
Comparison of eq. 4 with eq. 1 shows that after collapsing of error and correct 
states this model is the same as that proposed by Chumbley (1972) once the 
AI-state has been left. 

(c) Condition 3 

Conditions 1 and 2 may be regarded as experimental tasks that single out the two 
processes assumed by the duoprocess theory. These tasks are “combined” in condi- 
tion 3. In this task the problem is to categorize correctly a series of stimuli which 
vary on four-valued dimensions into four categories. The categorization rule is 
based on a single dimension and there is a one-one relation between the values of 
the relevant dimension and the response categories. 

After selection of the relevant dimension the model for condition 2 applies. 
Prior to selection of the relevant dimension the S is processing an irrelevant dimen- 
sion. He may have associated one to four values on that irrelevant dimension with a 
response-category. Thus, when the S holds an irrelevant dimension, he may be in 
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one of three states, Ii, lz, or 14, where the subscript indicates the number of associ- 
ations learned (states I3 and I4 are combined since the choice behavior of the S is 
the same in both states). Eq. (5) gives the Markov model specified by our version of 
the duoprocess theory for this condition. For reasons of clarity we have collapsed 
the error and correct states. (For more details we refer to Raaijmakers 1976.) 

L 

K2 

RI 

14 

12 

11 

L R2 RI 14 I2 11 

1 0 0 0 0 0 
u 
? 1-m: 0 0 0 0 

(5) 

I.V.=lO 0 c 0 0 1 -~cl. 

The analysis of the model given in eq. 5 is somewhat more complicated than the 
relatively simple analysis of Chumbley’s version of the duoprocess theory (Chum- 
blcy 1972: appendix) due to the fact that the I-states cannot be lumped into a 
single state, as in Chumbley’s model (see eq. 1). This is a consequence of our 
assumptions concerning infirming errors which imply that the probability of an 
error being an infirming error is not constant during all stages of processing an irrel- 
evant dimension. Explicit expressions for the probability distributions of the vari- 
ous statistics are hard to obtain. As shown in Appendix A, it is possible to derive 
analytic solutions for the probability generating functions (Feller 1968) for the 
total number of errors and the trial of last error and thus for the means and vari- 
ances of those statistics. The latter may be used for parameter estimation purposes. 
Given estimates for the parameters other predicted statistics may be derived using 
the general numerical methods given by Millward ( 1969). 

The stimuli were geometric figures drawn on cards of 24 X 30 cm. There were 
four dimensions. Depending on the experimental conditions there were two (condi- 
tion 1) or four (conditions 2 and 3) values on each dimension. The dimensions 
were: (a) position of dot (upper right-, lower right-, lower left-, or upper left-hand 
corner of the card), (b) “texture” of the figures (black, white, white with horizon- 
tal black stripes, or white with vertical black stripes), (c) number of figures on a 
card (one, two, three, or four) and (d) form (square, triangle, circle, or cross). 

Appurotus and procdure 

The experiment was run on a PDP 1 l/45 computer. Ss were seated in front of a 
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T.V. monitor and a panel with a number of response-buttons, four of which were 
used in this experiment. Underneath each of these four buttons was a category-label 
(A, B, C, or D). Ss responded by pressing the appropriate button. The stimuli were 
recorded and stored on a videodisc-recorder (AMPEX MD 400). For condition 1 a 
random sequence of 50 pictures was recorded, for conditions 2 and 3 a sequence of 
250 pictures. 

Ss participated in groups of one to four persons. Curtains were placed between 
them so they could not watch each other. The groups had different starting points 
in the sequence and different stepsizes. Therefore, the stimulus sequence can be 
considered to be ‘random’ (at least as random as was possible with the apparatus 
used). The three conditions were presented in the same order for all Ss, namely first 
condition 1, then condition 3 and next condition 2. Ss learned to a criterion of ten 
consecutive correct responses. There was no time-limit for responding, although 
they were instructed not to wait too long (not longer than about 10 set). After the 
S had given his response, he was shown the stimulus with the correct category letter 
written underneath. This feedback was presented for 3 sec. There was an intertrial 
interval which lasted until 3 set after the last S (of that group) had received feed- 
back. Prior to the first trial the Ss were shown a card with the appropriate feedback 
(for 3 set). After an interval of 4 set the first to bc categorized stimulus was pres- 
entcd. 

Before each condition Ss were given instructions as to the type of problem and 
the number and kind of dimensions involved. Two groups of Ss were formed, 
depending on which of the dimensions was relevant, “position of dot” (dim 1) or 
“texture” (dim 2). The first group had dim 1 as the relevant dimension in condi- 
tions 1 and 2, while the second group had dim 2 as the relevant dimension in those 
tasks. In condition 3 the relevant dimensions were reversed so that group 1 now had 
dim 2 as the relevant dimension and group 2, dim 1. 

A total of 92 Ss participated in this experiment. About 60 of them were paid 
volunteers from a local secondary school. The remainder were students who served 
as a course requirement, and a few employees from the University of Nijmegen. The 
age of the Ss varied between 16 and 30 years. None of the Ss was practiced in con- 
cept identification tasks. Five protocols were deleted from the analysis. In four 
cases (all stemming from condition 3) the problem was not solved before or on trial 
70, probably due to a misunderstanding of the instructions. In the fifth case the S 
told the cxperimcnter that she had misintcrpretcd the instruction for condition 2. 

Results and discussion 

‘lh results arc presented here 3s two parallel series of experiments (see 
table 1). The reasons for presenting the results in this way are as fol- 
lows: 



244 .J. G. W. Raaijrnakers / Concept identificatiotl 

‘I’able I 
Subjects and relevant dimensions for each of the two series. 

Condition 

1 2 3 
-____.-_ - 

Series 1 Group 1 Group 2 Group 2 
Dim 1 Dim 2 Dim 1 

Series 2 Group 2 Zroup 1 Group 1 
Dim 2 Dim 1 Dim 2 

(1) We assume that the parameter c, the probability of sampling the 
relevant dimension, depends most on which dimension is relevant. 
Thus, we should have the same dimensions relevant in conditions 
1 and 3. 

(2) We assume that the parameter u, the probability of learning a value- 
category association, does not depend on which of the dimensions is 
relevant, but may be influenced by individual differences. There- 
fore, we should have the same subjects in conditions 2 and 3. 

It may be remarked that there is a slight inconsistency here: we assume 
in the application of the model that for a given group of subjects the 
parameter a is constant for all subjects, although we do admit possible 
interindividual differences. Nothing is known, however, about the effect 
of individual differences in this parameter on the detailed predictions of 
the model. If there would be an interaction between u and c the above 
design would be somewhat inadequate. 

It may be the case that the parameter a is also influenced by the 
complexity of the task, i.c. if the subject tries to remember more things 
at the same time (e.g. which dimensions he has already rejected) this 
might have an influence on the association parameter. For these reasons 
we will estimate u separately for conditions 2 and 3. It will then be pos- 
sible to decide c1 posteriori whether these two values (denoted by d2 and 
a*3) can be considered as estimates of the same “true” parameter. Thus, 
three parameters were estimated for each series: c, uz, and LIP. 

In table 2 are given the observed and predicted values of several sum- 
mary statistics for series 1 and in table 3 for series 2. The parameter 
estimates indicated at the bottom of these tables were obtained by 
minimizing the sum of the squared deviations of the observed from the 



T
ab

le
 

2 

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

se
ri

es
 

I.
 

C
on

di
tio

n 
1 

C
on

di
tio

n 
2 

C
on

di
tio

n 
3 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

T
ot

al
 

nu
m

be
r 

of
 

er
ro

rs
, 

T
 

M
ea

n 

xd
. 

T
ri

al
 

of
 l

as
t 

er
ro

r, 
L

 

M
ea

n 

s.
d

. 

N
um

be
rs

 
of

 e
rr

or
s 

be
fo

re
 

th
e 

fi
st

 
su

cc
es

s,
 

J 

M
ea

n 

s.
d.

 

M
ea

n 
to

ta
l 

nu
m

be
r 

of
 e

rr
or

 
ru

ns
, 

R
 

M
ea

n 
nu

m
be

r 
of

 
er

ro
r 

ru
ns

 
of

 
le

ng
th

 
i, 

rj
 

rt
 

r2
 

i-3
 

74
 

N
um

be
r 

of
 s

ub
je

ct
s 

1.
40

a 
1.

41
 

1.
82

 
a 

1.
97

 

1.
30

 
1.

85
 

1.
5 

1 
1.

27
 

2.
91

 
a 

2.
83

 
4.

31
 

a 
4.

19
 

3.
37

 
4.

06
 

3.
5 

1 
3.

40
 

0.
49

 
0.

41
 

0.
84

 
0.

73
 

0.
75

 
0.

77
 

1.
22

 
0.

90
 

1.
11

 
1 

.o
o 

1.
5 

1 
1.

49
 

0.
85

 
0.

71
 

1.
36

 
1.

11
 

0.
21

 
0.

21
 

0.
11

 
0.

29
 

0.
04

 
0.

06
 

0.
0 

0.
07

 

0.
0 

0.
02

 
0.

02
 

0.
01

 

47
 

45
 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

5 .F
 

f 

4.
78

 
a 

5.
12

 
2 

3.
82

 
3.

75
 

$:
 

9.
67

 
a 

9.
44

 
K

 
a 

8.
15

 
6.

68
 

’ S 2 
1.

33
 

1.
56

 
2 

1.
72

 
1.

84
 

z.
 

E
- 

2.
87

 
2.

70
 

2 

1.
91

 
1.

54
 

2.
 

0.
56

 
0.

58
 

s 

0.
13

 
0.

27
 

0.
09

 
0.

14
 

45
 

a 
U

se
d 

to
 e

st
im

at
e 

th
e 

pa
ra

m
et

er
s:

 
E

 =
 0

.4
14

,8
2 

= 
0.

59
1,

 
an

dB
3 

= 
0.

42
5 



T
ab

le
 

3 

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

se
ri

es
 

II
. 

C
on

di
tio

n 
1 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

C
on

di
tio

n 
2 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

C
on

di
tio

n 
3 

-_
__

_ 

O
bs

er
ve

d 
Pr

ed
ic

te
d 

5 

T
ot

al
 

nu
m

be
r 

of
 

er
ro

rs
, 

T
 

M
ea

n 

s.
d

. 

T
ri

al
 

of
 l

as
t 

er
ro

r, 
L

 

M
ea

n 

s
.d

. 

N
um

be
r 

of
 e

rr
or

s 
be

fo
re

 
th

e 
fi

rs
t 

su
cc

es
s,

 
J 

M
ea

n 

cd
. 

M
ea

n 
to

ta
l 

nu
m

be
r 

of
 e

rr
or

 
ru

ns
, 

R
 

M
ea

n 
nu

m
be

r 
of

 e
rr

or
 

ru
ns

 
of

 l
en

gt
h 

j, 
ri

 

rt
 

r2
 

73
 

r4
 

N
um

be
r 

of
 

su
bj

ec
ts

 

3.
84

 
a 

4.
00

 
1.

43
 

a 

4.
43

 
4.

47
 

0.
91

 

8.
49

 
a 

8.
00

 
3.

39
 

a 

10
.4

5 
9.

38
 

2.
70

 

0.
69

 
0.

67
 

0.
43

 

1.
02

 
1.

05
 

0.
58

 

2.
56

 
2.

40
 

1.
24

 

1.
78

 
1.

44
 

1.
09

 

0.
44

 
0.

58
 

0.
11

 

0.
20

 
0.

23
 

0.
04

 

0.
09

 
0.

09
 

0.
0 

45
 

a 
U

se
d 

to
 

es
tim

at
e 

th
e 

pa
ra

m
et

er
s:

 
d 

= 
0.

20
0,

da
 

= 
0.

72
1,

 
an

d 
d,

 
= 

0.
69

4 

46
 

T
 

1.
62

 
6.

70
 

a 
7.

96
 

;3
 

1.
01

 
5.

93
 

7.
25

 
B

 
Q

: 2 

3.
26

 
12

.5
6 

a 
11

.7
9 

F
$ 

2;
 

2.
67

 
10

.5
6 

0.
69

 
1.

74
 

0.
82

 
2.

17
 

1.
27

 
3.

47
 

0.
99

 
1.

88
 

0.
24

 
0.

81
 

0.
04

 
0.

42
 

0.
01

 
0.

12
 

10
.0

4 
; 0’

 
2 

2.
07

 
5 

2.
41

 
%

 
3.

08
 

2 3 a 
1.

36
 

2.
 

0.
64

 
L

 

0.
38

 

0.
24

 

43
 



J. G. W. Raaijmakers / Concept identification 241 

predicted values divided by the predicted values for the mean of the 
total number of errors and the trial of last error for all three conditions. 
The relevant formula’s are given in appendix A. The other predictions 
were obtained with a computer program based on the numerical meth- 
ods described in Millward (1969). 

As can be seen from these tables the predictions agree reasonably 
well with the data. For both series and each condition, the difference 
between the observed and the predicted distributions of the total num- 
ber of errors and the trial of last error was tested with the Kolmogorov- 
Smirnov statistic D (the maximum deviation of the observed from the 
predicted distribution function). None of these differences was signifi- 
cant at 01 = 0.10. In view of the fact that only three parameters were 
estimated for each series and that 12 tests were carried out (six for each 
series), the results are quite satisfactory. 

It may be noted that there is a strong effect of differential salience of 
the dimensions which overshadows any effect of differences in the asso- 
ciation parameter. By comparing conditions 1 and 3 of series 1 and 2 it 
becomes obvious that the dimension “position of dot” (dim 1) was 
much more salient than the dimension “texture” (dim 2). In the first 
series the parameters a, and a3 seem to have different “true” values. 
The standard error in these estimates is about 0.05 when M = 45 (this 
was found in simulations of the model). However this is not true for the 
second series. 

The present model may be easily generalized to other types of sam- 
pling rules. In fact, due to the analytical separation of the dimension- 
selection and the associative learning processes, it is easy to generalize 

any sampling scheme developed in the context of the standard, two- 
category task to the present task as long as the sampling scheme 
assumes that at any stage only a single dimension is held. For example, 
instead of assuming that dimension sampling is with replacement, we 
might assume that the subject samples without replacement of the just 
infirmed dimension (local nonreplacement). If we denote by c,, the 
probability of sampling the relevant dimension on the initial trial, a 
good approximation is obtained by setting c in the transition matrix 
equal to cl = (m - 1) c,/(m - 2 -co) where m is the number of dimen- 
sions. The expected number of irrelevant dimensions sampled prior to 
selection of the relevant dimension is then given by E(N) = (1 -c,)/c,. 
This approximation is exact if all dimensions have equal weights. Simi- 
lar methods may be applied if one makes still other assumptions regard- 
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ing the dimension-selection process, for example “global nonreplace- 
ment”, the permanent elimination of rejected dimensions (Gregg and 
Simon 1967). 

The present model may be used in the analysis of the effect of vari- 
ous task variables on performance in concept identification tasks. For 
example, it may be used to analyze the effect of the type of feedback 
given (see Comstock and Chumbley 1973). Note finally that the present 
model is consistent with the results reported by Polson and Dunham 
(197 1). In the next section we will show how the same theory may be 
used to generate models for the behavior of subjects in conjunctive con- 
cept identification tasks. 

Experiment 2: the four-choice concept problem 

In this section we will apply our revised version of the duoprocess theory on one 
type of conjunctive rule, the so-called four-choice concept problem. In the four- 
choice concept problem stimuli are presented which vary on K + 2 binary dimen- 
sions, two independent relevant dimensions and K irrelevant dimensions. The cor- 
rect classification is determined by the combination of the values of the two rele- 
vant dimension. To every combination there corresponds one response-category. 
For example, if color (blue or yellow) and form (triangle or square) are relevant, 
the classification rule might be: all blue triangles in category A, all yellow triangles 
in category B, all yellow squares in category C, and all blue squares in category D. 
This particular type of concept task has been studied by, among others, Bourne and 
Haygood (1959), Bourne and Restle (1959), Trabasso and Bower (1964), and 
Wandmacher and Vorberg ( 1974). 

It is assumed that the S forms a hypothesis as to which dimensions are relevant, 
by sampling, in a successive manner, two dimensions. As in the model for affirmative 
rules the selection probabilities depend on the relative weights of the dimensions. 
The probability of sampling the dimensions i and j, Cij, equals: 

where ri and rj are the relative weights of dimensions i and i in the set of K + 2 
dimensions. If we assume that the two relevant dimensions are equally salient, the 
probability of selecting the pair of relevant dimensions is given by: 

cr = 2r*/( 1 - r). (7) 

where Y denotes the relative weight of the relevant dimension. Instead of the pair of 
relevant dimensions the S may also sample one relevant and one irrelevant dimen- 
sion or two irrelevant dimensions. The probabilities of these two types of hypoth- 
eses are given by resp. ca and cs: 
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ca =2r(l -2r)[l/(l -r)+K/(K- 1+2r)l (8) 

c j = 1 - ci - ca = (K - l)( 1 - 2r)‘/(K - 1 + 2r). (9) 

It should be noted that the assumption of equal weights for the two relevant dimen- 
sions does not affect the predictions very much. For example, if ri = 0.40 and 
r2 = 0.20 and K = 2, then we get cl = 0.23, c2 = 0.67, and c3 = 0.10. Assuming 
rI = r2 =I and setting r = 0.286 gives ci = 0.23, c2 = 0.65, and cs = 0.12. The duo- 
process framework does not of course necessitate the assumption that the dimen- 
sions are sampled successively. Instead it might be assumed that a pair of dimen- 
sions is selected from the set of dimension-pairs. It is easy to derive similar equa- 
tions for such a sampling assumption (for more details see Raaijmakers 1977). If all 
dimensions have equal weights these two methods of sampling are equivalent, that 
is, they give the same results for ci, c2, and c3. 

In all other respects the development of a model for this type of conjunctive 
task proceeds in a similar way as for the affirmative tasks. The duoprocess theory 
specifies that the S may be in three types of states: RRj, the state where he has 
selected the two relevant dimensions and has learned i associations; IRj, the state 
where he has selected one relevant and one irrelevant dimension and has learned i 
associations; and IIj, where he has selected two irrelevant dimensions and has 
learned i associations between the combinations of values from those dimensions 
and the response-categories. As in the case of affirmative rules our assumptions 
imply that certain states may be lumped since the behavior of the S is the same in 
those states. Thus, the states RRs and RR4 are combined to a single state (L), as 
are the states IRs and IR4 (both denoted by IR4) and the states 11s and II4 
(denoted by I14). The state IRs however must be subdivided in the two states IRzl 
and IR22. This is because the two learned associations may involve either only one 
of the two values of the relevant dimension (IR2 i) or both values on that dimension 
(IR22), and because, the probability of an infirming error differs in these two cases. 
In this way we obtain the Markov model given in eq. 10 (see page 250). 

From eq. 10 is obvious that the behavior in the two sets of states RRj and IIj is 
equivalent to the behavior in the corresponding states Ri and Ii of the model for 
the affirmative task given in eq. 5. We will make use of this correspondence 
between the two models in the analysis of the present model. As shown in appendix 
B, it is again possible to derive predictions for the means and variances of the statis- 
tics TNE and TLE which may be used for parameter estimation purposes. 

We will compare the above model with the model proposed for this task by Tra- 
basso and Bower (1964) which is based on the so-called subproblem learning the- 
ory. In this theory it is assumed that the S solves the problem by independently 
solving two subproblems. In the example given earlier the subproblems would be: 
(1) blue in A or D, yellow in B or C, and (2) triangle in A or B, square in C or D. 
Trabasso and Bower (1964) assumed that Ss could solve each of these subproblems 
on every trial in an all-or-none fashion, whether an error was made on that trial or 
not. It is possible however to adapt the theory to make it more compatible with the 
Bower and Trabasso model for simple concept identification tasks, in which it is 
assumed that Ss solve simple problems by selecting a new hypothesis only after 
errors. 
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Suppose that the S solves each of the subproblems in the way described by the 
Bower and Trabasso (1964) model. That is, he selects hypotheses separately and 
independently for each subproblem, and he rejects a hypothesis if the outcome of a 
trial is inconsistent with that hypothesis. In the case that the S holds two irrelevant 
hypotheses, the probability that an error is infirming to each of the two hypotheses 
can be calculated as follows. The S makes an error if he chooses, in accordance with 
his irrelevant hypothesis, any of the three incorrect response-categories. The out- 
come is inconsistent with both hypothesis in one of these three cases. In the other 
two it is inconsistent with only one hypothesis. 

Following Trabasso and Bower, we will distinguish three states 0, 1, and 2, 
depending on whether 0, 1, or 2 subproblems have been solved. In the states 0 and 
1 a distinction is made whether a correct response or an error is made. Let c denote 
the probability of sampling the relevant hypothesis for a particular subproblem 
after an inconsistent outcome. The probability of going after an error in state OE 
to states 2, 1, or 0 is given by: 

P(2 on trial n + 1 I OE on trial n) = &” , 

P( 1 on trial n + 1 1 OE on trial n) = ?jc + i[ 2c( 1 - c)] , 

P(Oontrialn+ l]OEontrialn)=$(l -c)+&l -c)* 

This leads to the following transition matrix for the Trabasso and Bower model 
with the ‘learning-on-errors’ assumption: 

2 1s 1E OS OE 

0 0 0 

3 3 0 

$(l -c) i(l -c) 0 

0 

0 

0 

OS 0 ! 0 0 t 3 
OE fc’ S(2 - c) $2 - c) $1 -c)(3 -c) $1 -c)(3 -c) 

I.V.= [O 0 0 $ $1. 

If we combine the error and correct states, the following transition matrix is ob- 
tained: 

2 1 0 P(C) 

2 r 1 0 0 

14 l -; 0 

I[1 1 

3 

0 (‘i-,’ 2@(1 -$) (1 -5)* r 
4 

(12) 

I.V.=[O 0 11. 

This matrix is equal to the one given by Trabasso and Bower (1964: 157) after sub- 
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stitution of 0 = c/2. Thus, a similar relationship holds between these two models 
as between the Bower and Trabasso model for concept learning and the one-ele- 
ment model: the two models do not make very different predictions for the ordi- 
nary experiment. 

It should be noted that the revised model implies the socalled multiplication 
rule, just as was the case with the original model. That is, the probability of a cor- 
rect response (P,) is equal to the product of the probabilities of a correct response 
to each of the subproblems (PL): 

p, = l _ (1 $1 +;(l -$(n-l) 

= [1 -g -$-‘I’ = (pi,)2 (13) 

Results consistent with this subproblem learning theory were obtained by Trabasso 
and Bower (1964) and Wandmacher and Vorberg (1974). It may be the case how- 
ever that these results can be just as well explained by the duoprocess theory (see 
Chumbley 1972). One problem with the Trabasso and Bower data is that in their 
experiment the stimuli were not presented in a random order. In the procedure 
they used, no two successive stimuli belonged to the same category. This probably 
has an effect on the trial of last error which is not incorporated in their model (see 
Cotton (197 1, 1974) for a discussion of the role of stimulus sequence on concept 
identification). Results consistent with a duoprocess interpretation were obtained 
by Overstreet and Dunham ( 1969) and Thomson (1972). 

Method 

Materials 

The same set of stimuli was used as in the first experiment. The two relevant 
dimensions were: “position of dot” (upper left or lower right corner) and “form” 
(triangle or square). The two irrelavant dimensions were: “texture” (black or white 
with horizontal stripes) and “number” (two or three figures on a card). 

Apparatus and procedure 

The same apparatus and general procedure were used as in experiment 1. Ss were 
given only a brief instruction describing the type of rule and the dimensions used. 

Subjects 

The same group of 92 Ss as in the first experiment participated in this experi- 
ment which took place immediately after the first experiment. The protocols of 
4 Ss could not be used due to apparatus failure. Therefore, all analyses are based on 
the data of the 88 remaining Ss. 
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Results and discussion 

In table 4 are given the observed values of several summary statistics 
together with the corresponding values predicted by, respectively, the 
present version of the duoprocess theory (D theory) and the revised 
Trabasso and Bower model (T-B theory). The two parameters of the 
duoprocess theory, a and r, were estimated by minimizing the sum of 
the squared deviations of the observed from the predicted values 
divided by the predicted values for the means and variances of the total 
number of errors and the trial of last error. The parameter c for the T-B 
model was estimated from the mean total number of errors. The 
remaining predictions were obtained with a computer program based on 
the methods developed by Millward (1969). 

As can be seen in table 4, the values predicted by the duoprocess 
theory are quite close to the observed values. Only the observed vari- 

Table 4 
Summary statistics for experiment 2. 

Observed 

Total number of errors, T 
Mean 8.72 
s. d. 7.58 

Trial of last error, L 

Mean 17.56 

s. d. 14.50 

Number of errors before 

the fist success, J 

Mean 1.50 

s.d. 1.58 

Mean total number of 

error runs, R 4.83 

Mean number of error runs 

of length j, ri 

rt 2.83 

r2 1 .oo 

r3 0.55 

r4 0.25 

a Used for parameter-estimation: i= 0.288,d = 0.364 

b Used for parameter-estimation: c’= 0.199 

Predicted 

D theory 

9.64 a 

7.93 = 

17.45 a 

13.35 a 

Predicted 

T-B theory 

8.72 b 

5.67 

14.80 

10.66 

1.58 2.05 

1.91 2.05 

4.55 4.12 

2.32 1.98 

1.02 1.01 

0.53 0.52 

0.29 0.28 
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ante of the number of errors before the first success is significantly 
lower than predicted. The Trabasso and Bower theory however predicts 
a still higher value. The T-B theory also predicts too low values for the 
variance of the total number of errors (x’ = 155.5, dj’= 87, p < 0.001) 
and the trial of last error (x2 = 161.0, df= 87, p < 0.001). Thus, the 
predictions of the duoprocess theory are in general closer to the data 
than those of the subproblem learning theory. The Kolmogorov-Smir- 
nov test for goodness-of-fit was applied to the distribution of the total 
number of errors and the trial of last error. In both cases, the duopro- 
cess model gave a better fit. In the case of TNE, significant deviations 
(a = 0.05) were observed for the T-B theory, but not for the D-theory. 
Thus our results are more consistent with the duoprocess theory than 
with the subproblem learning theory. It is interesting to note that our 
estimate for r agrees quite well with the corresponding parameter esti- 
mates obtained in the first experiment. In that experiment we obtained 
a relative weight of about 0.40 for the dimension “position of dot” 
(one of the relevant dimensions in this task) and about 0.20 for the 
dimension “texture” (now irrelevant). Assuming equal weights for the 
remaining two dimensions gives r1 = 0.40 and r2 = 0.20. As described 
earlier this corresponds (under the assumption r, = r2 = r) to the value 
r = 0.286, nearly equal to the obtained estimate r^ = 0.288. 

Moreover, there are several conceptual problems with the Trabasso 
and Bower theory. Firstly, Wandmacher and Vorberg (1974) showed 
that in order to explain their results a paired-associate learning stage 
had to be assumed: after the subject has selected the relevant dimension 
for a particular subproblem, he still has to associate the response-cate- 
gories in the. correct way to the values on that dimension, and this 
cannot all be accomplished on a single trial. However, if such an 
assumption is made, one must also drop the assumption that resampling 
occurs after every error prior to selection of the relevant dimension 
(Wandmacher and Vorberg 1974: 22 1), if the theory is to remain plau- 
sible. This means that some concept of resampling only after infirming 
errors has to be assumed. Thus, a kind of duoprocess subproblem 
learning theory would be .needed. Secondly, the independence assump- 
tion is, as it stands, not very plausible. As was already argued by Chum- 
bley (19’72), it is not very likely that a subject selects the same dimen- 
sion as relevant for both subproblems. Thus, the subproblems cannot be 
completely independent. 

* * * 
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Summarizing the results of experiments 1 and 2, it seems fair to con- 
clude that the present version of the duoprocess theory is a promising 
starting point for analyzing concept identification tasks, complex as 
well as simple, with affirmative as well as conjunctive rules. 

Appendix A 

For parameter estimation purposes we will need the formula’s for the 
predicted mean total number of errors (TNE) and the predicted mean 
trial of last error (TLE). For condition 1 these means are: 

E(TNE 1 ) = ( 1 - c)/c 
(14) 

E(TLE, ) = 2( 1 - c)/c 

For condition 2 the corresponding predictions were derived by Chum- 
bley ( 1972: appendix): 

E(TNE*) = 7/(6a) 

(15) 
E(TLE,)=2(10+9~)/[3a(2+a)(l +a)1 

The analysis of the duoprocess model for condition 3 is more compli- 
cated. In the model presented in eq. 5 the occurrence of an infirming 
error is a transient (uncertain) recurrent event: upon the occurrence of 
an infirming error the subject starts anew by sampling (with replace- 
ment) a new dimension (see also fig. 1). With probability 1 - c he will 
select an irrelevant dimension and will eventually make another 
infirming error; with probability c he will select the relevant dimension 
and make no more infirming errors. Thus, the recurrence probability of 
an infirming error equals (1 - c). It is therefore convenient to express 
the statistics TNE and TLE as the sum of a random number of mutually 
independent random variables: 

x= VI + v, + v, + . + vjv +R. 

In this equation Vi stands for the number of errors made during proces- 
sing of the i-th selected irrelevant dimension (in the case of TNE) or 
the number of trials up to and including the occurrence of an infirming 
error (in the case of TLE). R stands for the number of errors or the trial 
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of last error associated with the processing of the relevant dimension. 
N is a random variable corresponding to the number of infirming errors, 
or, equivalently, to the number of times that an irrelevant dimension is 
sampled prior to sampling of the relevant dimension. 

For a particular value of N, say II, the probability generating function 
(PGF) of X is equal to [FJ’;(s)]” E;(s), where F”(S) and /;;(s) denote the 
PGF’s for resp. Vi and R. The unconditional PGF for X is then given 
by: 

G,(s) = ,?zg P(N = ,z)[ F;,(s)]“Fr(s) 

From eq. 16 we get: 

E(X) = = E(N) E(V) + E(R) 

Var(X> = Var(N) E2 (V) + E(N) Var( V) + Var(R). 

E(N) and Var(N) are determined by the recurrence probability and are 
equal to E(TNEr) and Var(TNE,) since in that condition Vi = 1 for all 
i and E(R) = Var(R) = 0. E(R) and Var(R) are given by the corre- 
sponding statistics derived for the model for condition 2 (see eq. 4) 
since in that case E(N) = Var(N) = 0. E(V) and Var( V) may be derived 
by applying standard methods to the following Markov chain, where 
the process enters the absorbing state upon the occurrence of an 
infirming error: 

A 1, 12 1, P(C) 

After some tedious calculations we get: 

E(TNE,)=2(10+3a)(l +a)/[(5+2a)(2+3a)] 

WLE,)=8(10+3a)(l +a)/[3(5+2a)(2+3a)]. 

(17) 

(18) 
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E(TNE,) and E(TLE,) are given in eq. 15, and E(N) = (1 - c>/c. It 
should be noted that the above method of analysis is quite general and 
may be applied to any concept identification task with an affirmative 
rule. For example, with ternary dimensions one would obtain a Markov 
model with states L, R1, IS, and 11, and the same method of analysis 
would be applicable. 

Appendix B 

A similar type of analysis is possible for the model presented in eq. 10. 
The statistics TNE and TLE can be expressed as the following sum: 

x = v, + v, + . . . +VM+W1+w~+...+WN+R. 

In this equation Vi stands for the number of errors made during pro- 
cessing of the i-th pair of irrelevant dimensions (in the case of TNE) or 
the number of trials up to and including the occurrence of an infirming 
error (in the case of TLE). Wj stands for the same statistics during pro- 
cessing of the j-th selected pair consisting of one relevant and one irrel- 
evant dimension. R stands for the number of errors (or the trial of last 
error) associated with the processing of the pair of relevant dimensions. 
M and N are random variables corresponding to the number of times 
that a hypothesis based on resp. two irrelevant or one relevant and one 
irrelevant dimension is sampled before sampling of the solution dimen- 
sions. 

For particular values of M and N, say m and ~2, the PGF of X is given 
by [F,(s)]” [F,(s)l”F,(s) where F”(s), F,(s) and F,.(s) are the PGF’s 
for resp. Vi, Wj, and R. As M and N are not constant the PGF for X is 
given by:, 

c-3 m 

G,(s) = c c [F”(s)]” [F,(s)l”F,(s)P(M = m, N = n). 
m=O n=O 

(19) 

Let N(s,, s2) be the bivariate probability generating function for the 
bivariate distribution of (m. M), i.e. : 

H(s,,s,)= c c (sl>“(sz)nP(M=m,N=n). 
m=O n=O 

(20) 
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Comparing eqs. 19 and 20, we see that G,(s) may be written as: 

G,(S) = H[F,(s), F,(s)] E;(S). 

The mean and variance of X can be shown to be: 

E(X) = E(M) E( I’) + E(N) E(W) + E(R) 

Var(X) = Var(M) E2( V) + E(M) Var( V) + Var(N)L?(W) 

(21) 

+ E(N) Var( W) + 2E( V) E(W) Cov(M, N) + Var(R). (22) 

In case the dimension selection is with replacement, the distribution of 
(m, n) is given by: 

By substituting z = m + H : 

= c,/(l - C3Sl - czs2) 

For the mean, variance, and covariance of M and N we find: 

E(M) = cj/c’l, 

Var(M) = c,( 1 - c,)/(c, )’ , 

WV = CZIL’, , 

Var(N) =c*(l Pc,)/(c1)2, 

Cov(M, N) = c2 c3 /<c, )’ . 

E(TNE,) and E(TLE,) are given by eq. 15. The variances of these statis- 
tics were derived by Chumbley (1972: appendix): 
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Var(TNE,) = 2(2 - ~)/(3a)~ + 1/(2a)’ 

Var(TLE,) = 4(76 f 24~ - 27a2)/[9a2(2 + a) (1 + a)] 

+ E(TLE,) - E’(TLE,>. 

E(TNE,) and E(TLE,) were derived in the previous section and are 
given by eq. 18. Var(TNE,) and Var(TLE,) were similarly derived: 

Var(TNE,) = 2( 100 + 96a + 3 la2 - 4a3)/[ (5 + 2~)’ (2 + ~u)~I 

Var(TLE,) = 8(500 + 544~ + 293a’ + 5 la3 + 18a4)/[9(5 + 2~2)~ 

x (2 + 3u)2]. 

As in the case of E(I’) and Var(l/), E(W) may be obtained by analyzing 
the following Markov chain, corresponding to the processing of a hy- 
pothesis based on one relevant and one irrelevant dimension until the 
occurrence of an infirming error: 

A IR, IR2 1 IR,, IR, P(C) 

0 0 

0 0 

I.V.=[O 0 0 0 11. 

From eq. 23 we get: 

(23) 

E(TNE, ) = 
2(16+61a+61u2 + 15~~) 

3(2+a)(2+ 5u)(l +2a) ’ 

Var(TNE, ) = 
2(230 + 1758~ + 3157~~ + 2044~” + 435~~ - 100~') 

9(2 + a>2 (2 + 5~)’ (1 + 2~)~ 

E(TLE, ) =4(1 +a)/(1 + 2a), 

Var(TLE,) = 4(3 + a + 2u2)/(1 + 2~)~. 

Thus, predictions for the means and variances of TNE and TLE can be 
obtained by substitution of the above results in eqs. 21 and 22. The 
equations may then be used for parameter estimation purposes. 
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