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Abstract

Spacing between study trials of an item increases the probability that item will be recalled. This article
presents a new model for spacing based on the SAM theory of memory developed byRaaijmakers and
Shiffrin (1980, 1981). The model is a generalization of the SAM model as applied to interference
paradigms (Mensink & Raaijmakers, 1988, 1989) and may be viewed as a mathematical version of the
Component-Levels theory proposed by Glenberg (1979). It is assumed that on a second presentation of
an item, information is added to an existing trace if the episodic memory image corresponding to that
item is retrieved. If it is not retrieved, a new image is stored. It is shown that the model predicts many
standard findings including the lack of a spacing effect for the recall of at least one of two items each
presented once (Ross & Landauer, 1978).
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

That performance in a memory task increases with repetition of the material is a basic and
somewhat trivial finding in memory research. What is not trivial however is the question why.
What exactly happens when an item is presented for a second time? Do we store two memory
traces, one for each occurrence, or do we somehow strengthen the trace that was formed on the
first trial? Over the years this question has been answered in many different ways. Some theories
hold that each presentation is stored separately (e.g.,Landauer, 1975) whereas others assume
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only a single memory trace where additional presentations either increase the probability of
storing the trace in long-term memory (e.g., models of the all-or-none type,Bower, 1961), or
increase the strength of the trace.

A related issue concerns the effects of spacing of individual repetitions. A well-known
phenomenon that has been observed in many learning paradigms is thedistributed practiceor
spacing effect. As a general rule, provided the retention interval is not too short, the probability
that a person will recall an item that has been presented twice, increases as the interval or lag
between the two presentations is increased (and similarly for more than two presentations). This
finding is intriguing since the spacing effect occurs despite the fact that the retention interval
for the first presentation is larger in the spaced presentation situation and hence one might have
expected more forgetting of the corresponding memory trace rather than the increase that is in
fact observed.

An additional complication for any model that claims to provide a complete account of
spacing effects, is that the effect interacts with the length of the retention interval: at short
retention intervals the effect reverses and performance decreases with an increase in the spacing
interval. Moreover, at intermediate retention intervals, the effect is non-monotonic. This latter
finding has been especially troublesome for many accounts for spacing effects.

The spacing effect is a robust finding that is not only obtained with paired associates or other
typical laboratory material but also in real-life training and learning situations (Baddeley &
Longman, 1978; Bahrick & Phelps, 1987; Smith & Rothkopf, 1984). This probably means that
basic principles of learning and retention are involved. As we will show in this article, certain
findings in this literature also have implications for our initial question concerning separate
versus cumulative memory traces.

In this article we will show that the SAM theory for recall as developed byRaaijmakers
and Shiffrin (1980, 1981)and incorporating the contextual fluctuation extension developed
by Mensink and Raaijmakers (1988, 1989), gives a good account for spacing effects. The
importance of this demonstration is that it shows that the SAM theory provides a relatively
complete explanation for all of the major phenomena of episodic recall. When SAM was
originally introduced, the goal was to show that the results from a variety of memory paradigms
could be fitted within a single theoretical framework. Such a goal was quite ambitious at the time
(and probably still is) but, 20 years after its introduction, it seems a fair conclusion that SAM
has been relatively successful. Although there have been a number of problems (especially
with respect to the recognition data), the model still stands as one of the major frameworks for
episodic memory.

Recently, a new model has been developed byShiffrin and Steyvers (1997). This model,
named REM, was developed initially to deal with the problematic results in recognition memory
but has since been extended to recall paradigms as well as to some implicit and semantic
memory paradigms (seeRaaijmakers & Shiffrin, 2002; Schooler, Shiffrin, & Raaijmakers,
2001). Thus, REM is an even more ambitious attempt at developing a global memory theory
since it is not restricted to episodic memory paradigms as was the case with SAM. Interestingly
however, the REM model for recall is formally similar to the SAM recall model and hence
the previously obtained results for recall can be directly generalized to REM. In this article
however we will restrict ourselves to SAM (primarily because the simulations that will be
reported were in fact based on SAM rather than REM).
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We will first give a brief summary of the general SAM theory for recall. Next, we will give
a brief summary of one important theoretical account of spacing effects, namely Glenberg’s
Component-Levels theory (Glenberg, 1979). Following that, we will describe in detail the
SAM model for spacing and repetition effects and how it handles the basic phenomena in this
area.

2. A brief summary of SAM

SAM (Search of Associative Memory) was originally developed as a model for free
recall (seeRaaijmakers, 1979). However, it was quickly recognized that the general frame-
work of SAM could be applied not just to free recall but also to other memory paradigms such
as paired-associate recall and recognition (seeGillund & Shiffrin, 1984). The SAM theory
is a probabilistic cue-dependent search theory that describes retrieval processes in long-term
memory. The basic framework of SAM assumes that during storage, information is repre-
sented in memory traces or “memory images,” that contain item, associative and contextual
information. The amount and type of information stored is determined by coding processes in
STS (elaborative rehearsal). In SAM, retrieval is assumed to be based on retrieval cues such as
experimenter-provided words, category names, self-generated words from a to-be-remembered
list and contextual cues.

Whether an image is retrieved or not, depends on the associative strengths of the retrieval
cues to that image (these strengths are usually assumed to be proportional to the length of time
an item has been studied). SAM incorporates a rule to compute the overall strength of a set
of probe cues to a particular image: letS(Qj, Ii) be the strength of association between cue
Qj and imageIi . Then the combined strength or activation of imageIi , V(i), for a probe set
consisting ofQ1,Q2, . . . ,Qm is given by

V (i) =
m∏
j=1

S(Qj , Ii) (1)

An important property of this multiplicative rule is that it allows the search process to be
focused on those traces that are associated to all cues rather than those that are associated to just
one of the cues. That is, those traces that are not associated to one of the cues (S(Qj , Ii) = 0
for somej) will have a combined activation equal to 0.

In paired-associate recall tasks (the paradigm that will be used throughout this paper), the
images stored in memory correspond to the word pairs on a given list (items of the form
A–B) and the cues that are used during retrieval are the stimulus member of the pair (theA
member of theA–B pair) and the contextual cues present at the time of testing. The search
process consists of a series of retrieval attempts using the same set of cues. Each attempt
involves selecting or sampling one image based on the activation strengthsVi . The probabil-
ity of sampling imageIi equals the relative strength of that image compared to all images
in LTS:

PS(Ii) = V (i)∑
V (k)

(2)
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Sampling an image allows recovery of some of the information from it. For simple recall
tasks, the probability of successfully recovering the name of the encoded word after sampling
the imageIi is assumed to be an exponential function of the sum of the strengths of the probe
set to the sampled image:

PR(Ii) = 1 − exp


−

m∑
j=1

S(Qj , Ii)


 (3)

If the retrieval is not successful, a new retrieval attempt is made and this continues until a
criterion ofLmaxfailures have occurred. Thus, the probability of recall is given by the probability
that the item was sampled at least once, times the probability that recovery was successful:

Precall(Ii) = [1 − (1 − PS(Ii))
Lmax]PR(Ii) (4)

Note that it is assumed here that whenever an incorrect trace (say corresponding to a pairC–D)
is sampled and recovered (a relatively rare event due to the low associative strength between
the cueA and the traceC–D), the recovered information will allow the rejection of that item
(i.e., it is recognized that the recovered information does not match the cueA). Although this
assumption is of course a bit too strong since it does not allow for intrusions to occur, it has little
or no effect on the predicted recall probabilities since the probability of successful recovery
of an incorrect trace is very low and such a trial would have nearly always resulted in an error
anyway. However, this assumption has the advantage of simplifying the model since it enables
the derivation of closed expressions for the predicted probability of recall as inEq. (4).

Raaijmakers and Shiffrin (1980, 1981)showed that a model based on these assumptions
could explain many basic results in free and cued recall. These included serial position effects,
the effects of list length and presentation time, the effects of cuing with category names in
categorized free recall, cumulative recall curves and inter-response times in free recall, hy-
permnesia effects in repeated recall, and part-list cuing effects (see alsoRaaijmakers & Phaf,
1999) for additional evidence for SAM’s explanation of part-list cuing). Although many of
these predictions were not very surprising given the basic structure of the model (and its simi-
larity to previous models proposed byAtkinson & Shiffrin, 1968; Shiffrin, 1970), some of the
predictions were novel and indeed counterintuitive (see e.g.,Raaijmakers & Phaf, 1999).

Despite its successes, the original SAM model was not equipped to handle basic forgetting
effects (other than through increased competition). In order to be able to handle time-dependent
changes in recall,Mensink and Raaijmakers (1988, 1989)proposed an extension of the SAM
model, the contextual fluctuation model. The basic idea, adapted from Stimulus Sampling The-
ory (Estes, 1955), is that a random fluctuation of elements occurs between two sets, a set of
available context elements and a set of (temporarily) unavailable context elements. The con-
textual strengths at test are a function of the relationship between the sets of available elements
at study and test.Mensink and Raaijmakers (1989)showed how some simple assumptions con-
cerning the fluctuation process yield equations for computing the probability that any given
element is active both at the time of storage and at the time of retrieval. A more elaborate anal-
ysis of contextual fluctuation processes and its application to free recall was recently proposed
by Howard and Kahana (1999), see alsoKahana (1996).
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Using this contextual fluctuation version of SAM, it was shown that a model could be
developed that was capable of providing a unified account of the interference and forgetting
phenomena of the classical interference literature. These included the basic results concerning
retroactive inhibition, proactive inhibition, spontaneous recovery, independence of List 1 and
List 2 recall, Osgood’s transfer and retroaction surface, as well as simple forgetting functions
(i.e., single-list paradigms).Mensink and Raaijmakers (1988)showed that these phenomena
could be explained by SAM without the need for an “unlearning” assumption, an assumption
that was shown to be the major reason for the difficulties encountered by traditional interference
theories in trying to provide a unified theory for forgetting.

In the next sections, we will show that this contextual fluctuation model also provides a
relatively simple explanation for spacing effects. However, before addressing the way in which
SAM may provide an explanation for spacing effects, we will first describe a non-quantitative
theory for spacing effects proposed byGlenberg (1979)that shares many features with the
SAM approach and has been a source of inspiration in our modeling attempts.

3. Glenberg’s Component-Levels theory

In the 1970s many theories were proposed to account for spacing and repetition effects (see
Crowder, 1976; Hintzman, 1974, 1976for detailed reviews), usually based on either some
notion of consolidation (e.g.,Landauer, 1967, 1969) or encoding variability (e.g.,Madigan,
1969; Melton, 1970). The most complete explanation is probably theComponent-Levels theory
proposed byGlenberg (1979). This theory assumes that a stimulus is represented by a multi-
component episodic trace. Which components (or features) are included in a trace, depends on
the actual stimulus that is presented, the nature of the processing task, the subject’s strategies
and the context in which the stimulus is presented (Glenberg, 1979, p. 96).Glenberg (1979)
distinguishes three types of components:contextual(representing the context at presentation),
structural(relations and associations between items), anddescriptive(specific item features).
These components differ as to the probability that they are included in traces representing
different items and the probability that they vary between successive presentations of the same
item. Contextual components are automatically included in all traces presented in the same
context. Context is assumed, however, to drift over time, leading to variability between succes-
sive presentations of the same item. The structural components that are encoded in the trace,
are less general and depend on the other items being processed simultaneously. Storage of
these components is not automatic but depends on control processes used by the subject and is
influenced by such factors as the nature of the task and the task instructions. Still more specific
are the descriptive components. These are copied from a semantic memory representation into
the episodic memory trace. They do however depend on the nature of the processing in which
the subject is engaged and the context (e.g., depth of encoding).

Generally speaking, spacing of presentations will lead to more contextual, structural, and
descriptive components being stored in the memory trace. However, performance (and hence
the spacing effect) is not only determined by the components that are encoded in the trace,
but also by the cues used at the time of retrieval. These retrieval cues activate corresponding
components in the memory trace. The degree of activation of a component is inversely related
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to the number of traces in which that component is included (its generality). The degree of
activation of a trace (apparently assumed to be directly related to memory performance) is a
monotonic function of the summed activation of its individual components. These assumptions
lead to three corollaries: (1) trace activation and retrieval are functions of the number of
components shared by the cue and the trace, (2) trace activation decreases as the generality of
the components in the trace or the cue increases, and (3) in general, trace activation increases
with the number of components included in the trace (Glenberg, 1979, p. 98).Glenberg (1979)
shows how this conceptual framework can be used to explain a variety of spacing and lag
effects in various recall and recognition paradigms.

It is not very difficult to see that Glenberg’s Component-Levels theory is in many aspects
quite similar (on a non-quantitative level) to SAM and especially the extension proposed by
Mensink and Raaijmakers (1988, 1989)that includes the assumption of contextual fluctuation.
The SAM model assumes that sampling of a trace is a function of the strength of the association
of the cues to that trace, relative to their associative strength to other traces. Once a trace has
been sampled, its recovery depends on the absolute strength of the trace (which would be
similar to the overlap in features between cue and trace). The nature of the sampling rule
(the product rule) also predicts that the most specific cue will mostly determine which trace
will be accessed. The assumption that features vary in their generality and that this affects the
retrieval probability, is also consistent with the SAM theory. Finally, both theories assume that
contextual components are subject to a gradual fluctuation process that leads to greater storage
with longer spacing intervals.

In this article, we will show that a SAM model may indeed be developed that provides a
good quantitative explanation of spacing phenomena. Given the obvious qualitative similarity
between the SAM theory and Glenberg’s Component-Levels theory, it follows that this model
may also be viewed as a quantitative version of Glenberg’s theory. We will show that this model
not only explains the major spacing and repetition phenomena but also an intriguing finding
presented byRoss and Landauer (1978)as inconsistent with any sort of encoding variability
model (a conclusion apparently shared byGlenberg & Smith, 1981). We will first describe the
spacing model in detail, followed by a comparison to data from several classic experiments.
We will then analyze the Ross–Landauer result. We will conclude with a brief discussion of
the merits of this particular model for spacing and a few aspects that might be problematic.

4. The SAM model for spacing and repetitions effects

In a typical spacing experiment, the subject might be given two presentations of a paired-
associate itemA–B (P1 andP2) followed by a test trial in which the stimulus member of the
pair (A) is given and the subject has to generate or recall the paired member (B). Such an
experiment might be schematically represented as

P1
t1→

tp

P2
t2→T

wheret1 represents the interpresentation orspacing interval, tp equals the presentation time of
an item, andt2 is theretention interval. The basic spacing effect refers to the finding that when
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the retention interval is reasonably long the probability of recallingB increaseswith the length
of the spacing interval (t2 is kept constant). Such an increase is remarkable since a simple model
in which each of the two presentations would be stored separately would predict a decrease
in the probability of recall since the retention interval for the first presentation (=t1 + tp + t2)
obviously increases ast1 increases and hence there should be more forgetting with spaced
presentations.

The model that we will be using in this application is the same as the one used byMensink and
Raaijmakers (1988, 1989)except that additional assumptions will have to be made concerning
what happens when a particular item is repeated after some interval. In particular, when a new
item is presented, it enters a short-term buffer (with probabilityw) and a new trace is formed
in LTS. At a second presentation one of three things may happen:

1. the item is still in the short-term buffer, in which case the response will be correct and
no new information will be stored in LTS,

2. the item is in LTS and can be retrieved, in which case the response will also be correct
and new information is added to the original trace, or

3. the item is in LTS and cannot be retrieved, in which case the response will not be correct
(unless guessing is possible) and a new trace will be formed in LTS.

In cases where there are more than two study trials or presentations, the same rules are
used. That is, information is added to the existing trace if the item is successfully retrieved,
otherwise a new trace is formed. An important question is what happens to a trace that could
not be retrieved or recovered at a certain trial. Would it still be possible to retrieve such a trace
at a later test? This is a tricky issue. On the one hand it would seem to be perfectly consistent
with SAM to allow for such a possibility. On the other hand, there are a number of factors that
make such an event unlikely. First, the SAM model includes the assumption that when a trace
is sampled but not recovered, recovery will also fail the next time that item is sampled using the
same set of cues.Gronlund and Shiffrin (1986, p. 558)modified this assumption in such a way
that the recovery probability was only based on those cues that had not been involved in earlier,
unsuccessful retrieval attempts. If such an assumption would be generalized to the present case,
it would imply that for a trace that was not retrieved on a given trial, the recovery probability
would be based on only those contextual elements that were not present at the time of the initial
testing. Second, although the present formulation of the model does not incorporate variability
in the associative strengths, such variability must obviously be present. Ignoring this aspect
works fine in most cases, except of course when one looks at conditional probabilities such as
the probability of successful retrieval given no success at an earlier trial. In such a case, vari-
ability has to be taken into account and would lead to a decrease in the conditional probability
of retrieval. Third, the probability of retrieving the old trace would be even lower than at the first
test since there would be an increase in the retention interval as well as an additional trace that
would be interfering with its retrieval (i.e., the new trace formed at the second presentation). All
in all then, the probability of retrieving such an old trace would have to be quite low. Empirically,
this would be consistent with the results that have been observed with repeated testing in RTT
paradigms where a single study trial is followed by two test trials without feedback (seeEstes,
1960). In such experiments the usual outcome is that the probability of a correct response on
the second test given no success on the first is close to zero (corrected for guessing).
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In the present model we therefore made the simplifying assumption that the probability of
retrieval was equal to zero for any trace that was not retrieved at a certain trial. Obviously, this
assumption cannot be completely correct but for the reasons described above it will probably
not make much of a difference. We verified this by calculating the probability of recall for a
model in which variability was assumed where we compared the predicted probabilities with
or without the inclusion of the old, non-retrieved trace. These probabilities differed by no more
than 0.5%. The present assumption has the advantage that it leads to relatively simple analytic
solutions for the probabilities of recall.

As in Mensink and Raaijmakers (1988), it is assumed that there is a continuous contextual
fluctuation process in which over time the current context becomes more and more dissimilar
to the original study context. Since the retrieval strength of the context cue to a memory image
is based on the overlap of the current context with the context stored in the trace, this implies
that the probability of successful retrieval from LTS will gradually decrease as the retention
interval increases.

Assuming that the search continues untilLmax failures have occurred, the probability of
recall for a retention interval oft seconds is given by (seeEq. (4)):

Precall(t) = [1 − (1 − PS(t))
Lmax]PR(t) (5)

wherePS(t) denotes the probability of sampling the correct item for a retention interval oft
seconds andPR(t) is the corresponding probability of successful recovery:

PS(t) = c(t)I (t)

c(t)I (t)+ Z(t)
(6)

and

PR(t) = 1 − exp[−θ(c(t)+ I (t))] (7)

wherec(t) is the contextual strength after a retention interval oft seconds andI(t) the corre-
sponding interitem strength between theA cue and theA–B image. The parameterZ(t) in the
denominator ofEq. (6)represents the interfering effect of all other associations (other, unre-
lated, pairs on the list as well as extra-experimental associations: seeMensink & Raaijmakers,
1988, p. 438). In this paper it will be assumed that bothI(t) andZ(t) are constant, i.e., they do
not depend on the retention intervalt. ForZ(t) this is of course a simplifying assumption since
it does not take into account the effects of new storage for other items during the retention
interval. However, since these effects are correlated with the effects due to context fluctuation
it is very difficult to separate the two. Moreover, in most experiments the items are embedded
in a long list and the retention intervals are relatively short so that the additional effects of new
storage for other items will not make much difference.

The parameterθ is introduced to handle the situation where the second presentation is not
itself a test trial but only a study trial. In such a case, we assume that an implicit retrieval attempt
is made using the presented word pairA–B (plus context) as cues (study-phase retrieval). Thus,
in the present model it is important whether or not the item is retrieved or recognized at the
second presentation, even if no explicit testing occurs. However, it seems reasonable to assume
that the probability of successful retrieval for such a case should be higher than when only
the A item is present as a cue. Hence, we might assume separateθ values for these two
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cases (explicit testing and implicit study-phase retrieval). Since these twoθ values cannot be
separately estimated (due to the confounding with the scaling of the standard strength values),
we will fix the θ value for recognition or study-phase retrieval at 1.0 and let the otherθ value
(for the explicit testing case) free to vary between 0 and 1. Theseθ parameters are only used
in the case where the second presentation is not itself a standard test trial. If all presentations
are also test trials, the sameθ value applies to all trials (in that caseθ is fixed at 0.5).

The most important aspect of the model is howc(t) depends on the length of the interval
between two presentations or between the last presentation and the test. It is assumed thatc(t)
is proportional to the number of contextual elements present at the time of retrieval that were
also present at the initial presentation (denoted byA(t)). In the simple version that we will use
here, it is assumed that all elements that are present on a given study trial will be stored in the
memory trace of that item. As shown byMensink and Raaijmakers (1988, 1989), the number
of stored contextual elements that are active after a retention interval oft seconds that were
also active at the study trial,A(t), is proportional to

A(t) = A(0)e−αt + Ks(1 − e−αt ) (8)

whereA(0) is the number of elements that are active att = 0 andK is the total number of
contextual elements (active and non-active) stored in the trace.sandα are two parameters that
are related to the rate at which contextual elements fluctuate between the active and inactive
state.Eq. (8)shows that the number of elements active after a retention interval oft seconds
is determined by the number of active elements at the start of the retention interval (A(0)), the
total number of stored contextual elements (K), as well as the rate of fluctuation between the
active and inactive state (s andα). After the first study trial for the item, bothA(0) andK are
equal to the number of elements active att = 0. Sincec(t) is proportional toA(t) and since
A(t) itself has a scaling parameter (theA(t) values are all proportional to the absolute number
of elements that are active at any given moment) we may setA(0) to a fixed value without
affecting in any way the predictions of the model. In the present applications of the model we
have therefore setA(0) equal to 1.0.

With more than one study trial followed by a test the situation becomes slightly more
complicated. As mentioned above, when the item is recognized (retrieved) atP2, additional
context elements will be stored in the existing trace. It is assumed (as inMensink & Raaijmakers,
1988) that a given element can be stored only once in a particular trace. It follows (seeMensink
& Raaijmakers, 1989) that the number of stored elements active atT after two presentations
with a spacing interval oft1 and a retention interval oft2 is equal to:

A2(t1, t2) = A(t1,0)e
−αt2 +K2(t1)s(1 − e−αt2) (9)

whereK2(t1) equals the total number of contextual elements stored after two study trials with a
spacing oft1 seconds. Note that the notation becomes a bit cumbersome so a brief clarification
might be helpful.Eq. (9)is equivalent toEq. (8)but taking into account that there now have
been two presentations (hence the subscript 2) with a spacing interval equal tot1 seconds.K2

depends ont1 since if the spacing interval is short, the two contexts will be more similar and
hence there will be fewer contextual elements stored in the combined trace.A2, the number
of elements activet2 seconds after the second presentation obviously depends on the retention
intervalt2 but also ont1 since it is a function ofK2.
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From the assumptions described above, it follows thatA2(t1,0) = A(0)andK2(t1) is equal to

K2(t1) = 2A(0)− A(t1) (10)

i.e.,K2(t1) equals the sum of the number of elements active atP1 andP2 minus the number of
elements active at bothP1 andP2 (i.e., the overlap between the context atP1 andP2).

Since the contextual strengths are proportional to the overlap between the context at the time
of testing and the context elements stored in the trace, we finally get for the context strengths:

for retrieval at P2:

c(t1) = a A(t1) (11)

for retrieval at T given successful retrieval at P2:

c(t1, t2) = a A2(t1, t2) (12)

for retrieval at T given no successful retrieval at P2:

c(t2) = a A(t2) (13)

wherea is a proportionality constant (seeMensink & Raaijmakers, 1988, 1989).
As in previous applications of SAM, it is assumed that the interitem strengths are incre-

mented following successful retrieval. In the present model the interitem strength after a single
study trial is equal tob, and the corresponding strength after study trialP2 given successful
study-phase retrieval is equal tob+ b2 whereb2 represents the effects of incrementing as well
as the additional storage due to study onP2.

For more complicated paradigms involving more than two study trials or presentations,
the same logic is used. That is, information is added to the existing trace when the item is
successfully retrieved, otherwise a new trace is formed. Finally, the probability that an item is
still in the short-term buffer after a delay oft seconds, is simply assumed to be equal to:

PSTS(t) = e−λt (14)

In sum, the model is based on the Mensink and Raaijmakers contextual fluctuation model
but includes the additional assumption that on a second presentation new information may be
added to the previously stored trace but only if that trace is retrieved from episodic or long-term
memory. Otherwise a new trace will be formed. In the next sections we will show that this
model accounts nicely for the major data on spacing and repetition effects.

5. Fits to standard data on spacing

In this section we will compare the present model to the data from a number of older
experiments that have provided reliable parametric data (i.e., that varied one or more design
parameters in a parametric way) and that have played an important role in previous theoretical
discussions of spacing effects. For ease of understanding we list inTable 1the parameters of
the present model as well the values that were used to generate the predicted data for these
experiments.
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Table 1
Parameters and their values in the fits to various data sets

Parameters and their meaning Rumelhart data Young data Glenberg data

α Fluctuation parameter (=sum of rates with which
active and inactive elements become inactive
and active, respectively)

0.087 0.082 0.013

s Fluctuation parameter (=ratio of the number of
active elements to the total number of context
elements)

0.288 0.150 0.260

a Scaling constant for context association 5.0a 5.0a 5.0a

w Probability that a new item enters the STS buffer 0.766 1.0a 1.0a

b Amount of interitem information stored on a
single study trial

0.688 0.246 0.732

Z Constant representing the interfering effect of
other memory traces in sampling

3.0 2.0 10.0

θ2 Scaling parameter in recovery equation for a test
trial

0.5a 0.300 0.215

λ Rate of decay from STS 0.310 0.746 0.800
Lmax Maximum number of retrieval attempts 3a 3a 3a

a This parameter was not varied but kept fixed in the fitting of the model.

The first set of data that we will fit the model to comes from an experiment performed by
Rumelhart (1967, Experiment I). In this experiment, a continuous paired-associate paradigm
was used in which the subjects were presented a long continuous list composed of 66 different
items (plus filler items) that were each repeated six times with interpresentation lags varying
between 1 and 10. Eight different lag sequences were used, each repeated six times throughout
the list. The items in this experiment were consonant–vowel–consonant (CVC) trigrams (e.g.,
KIG, VUP) paired with one of three digits (3, 5 or 7). In this experiment an anticipation
procedure was used in which the stimulus item was first presented for test and then, after the
subject had responded, the whole pair was shown for an additional 2 s. After the study phase
there was a three second inter-trial interval until the next test item was presented. Since there
were 50 subjects, each data point was based on 300 observations. Hence, this provides a dataset
that is very well suited for modeling purposes.

Table 2andFig. 1give the predicted and observed data for each of the eight conditions of
this experiment. The predictions were generated using the model described above including a
correction for guessing correctly (equal to 1/3). The parameters were estimated using a general
purpose minimization program (MINUIT, seeJames & Roos, 1975), minimizing the following
χ2-value (a simple algebraic rewrite of the standard Pearsonχ2):

χ2 =
∑ N(po − pe)

2

(pe − p2
e)

(15)

whereN is the number of observations andpo andpe are the observed and predicted probabilities
of correct recall and the summation is over all data points.

Since the present SAM model has a relatively large number of parameters (not all of which
may be estimable in a particular application), we have set some of the parameters to fixed values
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Table 2
Observed and predicted proportions correct for each of the conditions of theRumelhart (1967)experiment

Spacing condition Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

OBS PRE OBS PRE OBS PRE OBS PRE OBS PRE OBS PRE

10-10-10-10-10 0.320 0.333 0.660 0.677 0.787 0.783 0.847 0.841 0.873 0.878 0.893 0.905
10-10-1-1-10 0.343 0.333 0.703 0.677 0.797 0.783 0.943 0.916 0.967 0.952 0.887 0.895
6-6-6-6-10 0.373 0.333 0.733 0.729 0.810 0.824 0.867 0.872 0.920 0.904 0.907 0.909
6-6-1-1-10 0.370 0.333 0.660 0.729 0.833 0.824 0.917 0.923 0.943 0.953 0.890 0.900
3-3-3-3-10 0.290 0.333 0.793 0.779 0.863 0.868 0.893 0.899 0.917 0.919 0.870 0.897
1-1-10-10-10 0.333 0.333 0.850 0.821 0.907 0.922 0.777 0.788 0.850 0.836 0.880 0.875
1-1-6-6-10 0.310 0.333 0.793 0.821 0.920 0.922 0.840 0.840 0.883 0.868 0.877 0.879
1-1-1-1-10 0.293 0.333 0.850 0.821 0.917 0.922 0.967 0.942 0.973 0.947 0.890 0.853

for all applications. Thus,Lmaxwas fixed at 3.0,awas fixed at 5.0 (a value that allows reasonable
variation in the context strengths), andb2 was always equal tob (thus the interitem strength
afterk presentations was simply equal tok·b). In addition, the parameters were restricted to
specific ranges in order to avoid unreasonable variation in the parameter values obtained for
different experiments (this does have an effect on the goodness-of-fit values but it is only
minor). For the Rumelhart experiment, the following values were obtained for the remaining
six parameters:s = 0.288,λ = 0.310,α = 0.087,b = b2 = 0.688,Z = 3.00, andw = 0.766
(as mentioned earlier, allθ values were kept at 0.5 since each presentation is also a test trial).
The fit of the model is obviously quite good as indicated by theχ2-value of 38.01 (df = 34;
if the data from the first guessing trial are also taken into account as inRumelhart (1967):
χ2 = 47.76, df = 42). This is not surprising since the present model is quite similar to the
Markov model that was used byRumelhart (1967)and for which he obtained a similar goodness-
of-fit.

What is important in these data is the clear evidence for an interaction effect between the
length of the spacing interval and the retention interval. For example, when one compares
performance on Trial 4 for the 1-1-10-10-10 condition and the 10-10-10-10-10 condition, it
is clear that for a fairly long retention interval of 10, performance on those items that began
with a spacing of 1-1 (massed presentation) was clearly worse than the performance on the
items that started with spaced presentation (10-10): 0.777 versus 0.847 (predicted values:
0.788 vs. 0.841). However, with a short retention interval massed presentation is superior to
spaced presentation. For example, comparing again performance on Trial 4 for the conditions
1-1-1-1-10 and 10-10-1-1-10, the performance for the massed condition is 0.967 while the
performance in the spaced condition is 0.943 (predicted values: 0.942 vs. 0.916). This confirms
the general finding that spaced presentation is superior to massed presentation except when
the retention interval is very short.

In the present model there are two main reasons for the advantage of spaced presentations
with a moderately long retention interval such as in this experiment. The first is that a short
spacing interval keeps the item in STS and hence prevents the strengthening of the LTS trace.
The second factor is that a larger spacing interval leads to more new contextual elements being
stored in the trace (provided of course that the original trace is in fact retrieved). Both factors
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Fig. 1. Observed (dots) and predicted (lines) probabilities of recall for Experiment I ofRumelhart (1967). Each
graph gives the spacing (number of intervening items) between successive presentations.

are contributing to the predicted spacing effect and there is no simple way to determine their
relative importance.

However, it is not the case that (for longer retention intervals) the probability of retrieval
increases monotonically with increasing lag between successive presentations.Young (1971)
reports a clear non-monotonic spacing effect. Relevant results are presented inFig. 2. Presented
here are the data for those trials where there were two presentations (without testing) followed
by a test trial (P1–P2–T). The retention interval was kept constant at a lag of 10 items while
the spacing interval varied from 0 to 17 items. The items consisted of consonant trigrams
paired with one of the digits in the range 0–9. We fitted the model to these data and obtained
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Fig. 2. Observed and predicted probabilities of recall as a function of spacing interval (number of intervening items).
Data fromYoung (1971).

the following parameter estimates:s = 0.150,λ = 0.746,α = 0.082, b = b2 = 0.246,
Z = 2.00, w = 1.0 (fixed) andθ2 = 0.30. The fit of the model is good as indicated by
the χ2-value of 8.47 (df = 12) although this is less surprising given the relatively large
number of parameters compared to the number of data points. However, the main point of this
demonstration is to show that the model is indeed capable of generating non-monotonic spacing
effects.

A much more elaborate set of data was collected byGlenberg (1976, Experiment I). In this
experiment there were two presentations (without testing) followed by a test trial (P1–P2–T),
just as in the previous experiment. The paired-associate items were composed of common
four-letter nouns constructed so as to avoid obvious pre-experimental associations, rhymes,
and orthographic similarities.Fig. 3 gives the observed and predicted probabilities of recall
for each of the 24 conditions of the experiment. Each data point is based on 540 observations.
The predictions of the SAM model were obtained using the following parameter estimates:
s = 0.260, λ = 0.800, α = 0.013, b = b2 = 0.732,Z = 10.0, w = 1.0 (fixed) and
θ2 = 0.215. As can be seen fromFig. 3, the fit of the model is not as good as for the previous
experiments, as indicated by theχ2-value of 41.89 (df = 18). However, the model does capture
the basic characteristics of the data (except for the very short spacing lags, but see below). It
is of some interest to note that this result was already anticipated byGlenberg (1976)who
described a semi-quantitative model to account for these data that bears close similarity to the
present SAM model.

Although this set of data is frequently cited in discussions of spacing effects, we know
of only one other paper that explicitly tried to fit these data.Reed (1977)showed that the
Markov model ofYoung (1971)performed more or less similar as the present model (leading
to aχ2-value of 49.3,df = 18). However, a model based on Wickelgren’s strength–resistance
theory (Reed, 1976; Wickelgren, 1972, 1974a, 1974b) did perform substantially better, leading
to χ2 values between 24 and 30 depending on the exact assumptions of the model. The basic
reason for this superior fit seems to be due that the Reed model is capable of fitting the initial
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Fig. 3. Observed (left pane) and predicted (right pane) probabilities of recall as a function of spacing interval and
retention interval (TR). Data fromGlenberg (1976).

decrease for short retention intervals when the spacing interval increases from 0 to 3 s (see the
top curve in the left panel ofFig. 3).

However, a close inspection of the model proposed by Reed shows that it contains a rather
peculiar assumption in which the items with a lag of 0 are treated quite differently from items
that have a lag of 3 s (i.e., one item in between). Items with a lag of 0 are treated as a single
presentation and will remain in a short-term buffer for exactly 6 s (just enough to be in the
buffer at the time of testing when the retention interval is 6 s, measured from the start of the
presentation). However, items with a lag of 3 s will be immediately transferred to a “passive
memory” if they are recognized at the second presentation, leading to a somewhat longer
functional retention interval and hence a somewhat lower probability of recall (a factor that is
compensated at longer retention intervals by the fact that the item starts to build up a “resistance
to forgetting” sooner if it is recognized correctly at the second presentation). This strikes us as
a rather artificial solution. The solution also depends strongly on the assumption that an item
stays in the buffer for exactly 6 s (Reed ran additional fitting runs with this as a free parameter
and obtained values in the range of 5.99990–6.00009, which shows that it is indeed crucial that
the interval is exactly 6 s). It is hard to defend that an item that is in the buffer atP2 is treated
quite differently from an item that is repeated with a lag of 0.

In order to show that it is this assumption that is responsible for the better fit of the Reed
model and not the strength–resistance theory itself, we also ran the SAM model with the
assumption that items with a lag of 0 are treated as though they only had a single presentation.
For this version, we obtained aχ2-value of 28.77, comparable to the values obtained byReed
(1977). However, we believe that such an assumption is not really defensible. Moreover,Van
Winsum-Westra (1990)performed additional experiments aimed at replicating the dip observed
by Glenberg (1976)and could not replicate it. This reinforces our belief that one should not
attach too much significance to this small detail. Finally, it should be noted that the Reed
model predicts that an item that is presented twice with a single item in between shows worse
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performance than an item that is presented only once which would be rather astonishing if it
were indeed true.

All in all then, the SAM model presented here gives a good account of the major experiments
that have varied spacing and retention intervals in a systematic manner. The above applications
of the SAM model are not meant as some sort of demonstration that the SAM model is superior
to previous models for spacing effects. However, it does show that the results for which in the
past dedicated models were developed, can all be fitted within a much more general framework
that has also been shown to fit the data from quite different experimental paradigms.

In the next section we will apply this model to a finding that has proved difficult to explain
for theories of spacing effects based on variability notions.

6. The Ross–Landauer phenomenon

In 1978, Ross and Landauer published a small paper with rather far-reaching implications.
Ross and Landauer took as their starting point the observation that many (if not most) explana-
tions for the typical spacing effect are based on the assumption that spacing effects are due to
increasing independence in some relevant attribute as repetitions are more widely separated.
Examples of such explanations are the idea that attention fluctuates in some gradual way, the
idea that the place where memory traces are stored drifts with time, and the idea that what
is stored in the memory traces includes contextual information that fluctuates with time. The
present model would appear to fall in the latter category.

Ross and Landauer (1978)argued (and backed this up with mathematical analyses) that any
such theory should predict a spacing effect not just for two presentations of a given item but
also for two presentations of two different, unrelated items. That is, if there are two unrelated
itemsAandB, and one would look at the probability thateither A or Bis retrieved (the inclusive
OR case), then that probability should also show a spacing effect. For example, if the spacing
effect depends on the assumption that repetitions that are spaced will lead to the storage of sets
of context elements that are more different from each other (due to contextual fluctuation) and
that retrieval depends on the overlap of storage and test context, then there should also be a
spacing effect for the probability of retrieving either of two different items since these will also
share more context elements if they are closer together and hence the probability of recalling
bothitemsdecreasesas the items are more spaced. That is,P(A orB) = P(A)+P(B)−P (A
andB) and henceP(A or B) will increase ifP(A andB) decreases, or in other words as the
traces become more independent.

At first sight, this reasoning should also apply to the present model. Indeed,Glenberg
and Smith (1981, pp. 117–118)argued that this phenomenon provides a problem for the
Component-Levels theory ofGlenberg (1979), a theory that is quite similar to the present
model as we argued earlier. However, as we will show, Glenberg may have been too quick to
dismiss his own theory.

A basic assumption of the present model is that information is added to the originally
stored trace but only if that trace is retrieved at the second presentation (study-phase retrieval),
i.e., if the item is recognized as having been presented before. In order to understand the
significance of this assumption for the prediction of the Ross–Landauer phenomenon, let us take
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the case where the retention interval is relatively long and where the test context, due to random
fluctuation, is unrelated to either of the two presentation contexts. For the sake of argument,
assume that a repeated item is always recognized at the second presentation. In the present
model, the probability of retrieving a trace is directly related to the mean overlap between
that trace and the context at test. For a single item presented twice, the overlap between the
(combined) trace and the test context will obviously increase as the spacing increases, leading
to a higher probability of retrieval at test. However, for the inclusive OR case the situation is
quite different. In this case, the test context is (by assumption) not specifically related to either
of the two presentation contexts. Hence, the mean overlap with each of the two traces will not
vary as the interval between the presentations increases. There may be some residual effect of
the correlation between the two presentation contexts but this effect will be much smaller than
the effect of the mean overlap in the number of contextual elements.

Thus, if we denote the contextual features by the lettersa, b, c, etc. and if we assume that
the context atP2 = (p, q, r, s) and that in the massed case the context atP1 is equal toP2

whereas in the spaced case the context is (a, b, c, d) and thus different, then we get for the
context stored in each trace:

MASSED SPACED

One item twice (p,q, r,s) (a,b,c,d,p,q, r,s)
Two items once I1 (p,q, r,s) (a,b,c,d)

I2 (p,q, r,s) (p,q, r,s)

Assume the test context is not specifically related toP1 or P2 (i.e., a relatively long retention
interval) and is given by (a,c,p, r). In that case the mean overlap with each item is

MASSED SPACED

One item twice (p, r) (a,c,p, r)
Two items once I1 (p, r) (a,c)

I2 (p, r) (p, r)

Hence, the mean overlap changes for the repeated case but not for the inclusive OR case.
Whatever effect of spacing remains, must be due to the change in the correlation between the
retrieval of the two traces as a function of the spacing interval and this will be a much weaker
effect than that caused by the change in the mean overlap for the repeated case.

In order to verify this reasoning we ran a simulation using exactly the same SAM model as
before in which we computed the predicted values for the probability of recalling eitherA or B
where the spacing interval betweenA andB was varied from 1 to 10 and the retention interval
was kept constant at 60. In the SAM model as we have applied it here, the contextual fluctuation
process is the only factor that produces dependence between the probabilities of recall for two
unrelated items as a function of the spacing interval between the two presentations. Since the
fluctuation process is random (i.e., any element is just as likely to become active or inactive as
any other element), it is possible to compute the probabilities of a specific number of overlapping
elements between two moments in time by using standard combinatorial probability theory.
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For these computations, we assumed that at any point in time the number of inactive contextual
elements wasN = 120 and the number of active elements wasn = 40 (hence the total number
of contextual elements is set toN + n = 160). These values were chosen so as to be similar to
the obtained value fors(0.260) in the Glenberg simulation (in the fluctuation modelsis equal to
n/(N +n)). If we definePA(PB) as the time at which itemA(B) is presented, the model allows
us to compute the probabilities for various overlaps in the contextual elements betweenPA and
PB as well as betweenPB andT. For example, if the number of active elements equalsn = 40,
then the number of elements in the overlap betweenPB andT will be binomially distributed
with parametersn = 40 andp given byEq. (8)with A(0) = 1 andK = 1. Similarly, the
probability that the overlap betweenPA andT equalsi elements given that the overlap between
PA andPB is k and the overlap betweenPB andT is j, is then given by

P(AT = i| AB = k,BT = j) =
i∑

m=0

(
k

m

) (
n− k

j −m

)
(
n

j

) ×

(
n− k

i−m

) (
N − n+ k

n− j − i+m

)
(
N

n− j

) (16)

That is, then elements active atPB are partitioned into a set ofk elements that were also active
at PA and a set ofn − k elements that were not active atPA. The j elements in the overlap
betweenPB andT are drawn randomly from these two subsets, hence the number of elements
m that were active at bothPA, PB , andT follows a hypergeometric distribution (see the first
part ofEq. (16)) and similarly for the number of elementsi−m that were active atPA andTbut
not atPB (the second part ofEq. (16)). Finally, the overall probability that the overlap between
PA andT is equal toi is given by multiplying these two probabilities (that are independent)
and summing over all possible values ofm.

Using these equations it is possible to compute the probability of recallingA given recall of
B for any spacing and retention interval (since we know the conditional distributions for the
contextual overlap and the recall probabilities are a function of this overlap plus constant factors
that are determined by the parameters).Fig. 4gives an example using the parameter estimates
obtained for theGlenberg (1976)data. It is clear that the model predicts quite different effects
of spacing for the case where a single item is presented twice and the case where two items
are each presented once. The two-item-once case shows a gradual decline as a function of
the spacing interval (due to more forgetting ofA with increasing spacing betweenA andB)
whereas the one-item-twice case shows an increase. In these data, the probability of recalling
B given recall ofA varied only slightly as a function of the spacing interval: from 0.2502 at a
lag of 1 to 0.2500 at a lag of 10 (the unconditional probability was in this case equal to 0.244).
Hence, there is some effect due to the contextual fluctuation but the effect is extremely small
(note that this analysis disregards dependence due to subject selection effects since we are only
interested in changes in the dependence as a function of the spacing interval).

These simulations thus support our intuitive claim that the Ross–Landauer phenomenon is
not a problem for the present SAM model for spacing and repetition effects. It follows that
to the extent that theGlenberg (1979)theory follows the same principles as the SAM model,
these results are also not an embarrassment for Glenberg’s Component-Levels theory.
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Fig. 4. Predictions of the SAM model for the probability of recalling one or both of two items each presented once,
and for the probability of recall of a single item presented twice, as a function of the spacing interval.

7. Concluding remarks

In the present article, we have shown that a fairly straightforward application of the SAM
theory coupled with the contextual fluctuation model proposed byMensink and Raaijmakers
(1988, 1989)leads to a viable theory for spacing and repetition effects. In addition to the
contextual fluctuation assumptions, a basic principle of the present model is that spacing
effects are due to the storage of additional contextual elements in the same trace but only
when that trace is retrieved or recognized at the second presentation. Direct support for this
assumption is provided by the results of an experiment byJohnston and Uhl (1976). These
researchers conducted a test for encoding variability theories of spacing that was based on
the idea that if an item is not recognized at the second presentation, this should indicate
large differences in encoding (maximal encoding variability) and hence should increase the
probability of final recall. Their results showed the opposite: items that were not recognized
at the second presentation were recalled poorly. A similar result was obtained byMadigan
(1969)who found that a spacing effect was only found for items that were recognized as old
at the second presentation. Obviously, there are many problems in interpreting such results
(e.g., selection artifacts) but the general finding that spacing effects depend on the recognition
or implicit retrieval of the memory trace formed at the first presentation, is clearly consistent
with the present model.

We have no intention to provide an extended review of the many and often apparently
conflicting results in the literature on spacing effects in human memory nor of the many,
mostly qualitative, explanations that have been provided. However, we do believe that the
present model and the concepts on which it is based may serve as a general tool for the
evaluation of such proposals. For example, some explanations emphasize notions of variability
(in some form) while others emphasize deficient processing of massed presentations or the
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role of study-phase retrieval (see e.g.,Greene, 1989). The present model combines a number
of such mechanisms (although probably in a somewhat different form) and hence might be
used as a vehicle for investigating such less quantitative proposals.

Finally, we would like to draw attention to the fact that the assumption that successive
presentations of an item may be stored in the same memory trace, gains indirect support from
a quite different application of SAM.Shiffrin, Ratcliff and Clark (1990)examined various
models for recognition memory to determine whether or not these models could be made
consistent with the so-calledlist-strength effect(seeRatcliff, Clark, & Shiffrin, 1990). A
modified version of the SAM model for recognition (Gillund & Shiffrin, 1984) could be made
to predict such a result (using thedifferentiation assumption, seeShiffrin et al., 1990) but only
if it was assumed that repeated presentations of the same item were encoded in a single memory
trace. Additional evidence for this explanation was provided byMurnane and Shiffrin (1991),
see alsoShiffrin, Murnane, Gronlund, and Roth (1989). They tested whether a reversal of the
list-strength effect in recognition occurs if repetitions are presented in such a way that they
are likely to be encoded in separate images. They found that repetitions of words in different
sentences produced a list-strength effect whereas repetitions of entire sentences did not. As a
direct corollary, the present model for spacing effects would predict that in such a paradigm in
which repetitions are not encoded in a single trace, the effects of spacing between repetitions
would be greatly diminished.

Even though the present model seems to provide an adequate framework for the analysis of
spacing effects, there are still some remaining problems. First of all, the model in its full form
contains a relatively large number of parameters. For many experimental results several of the
parameters may be fixed at some relatively arbitrary value without any noticeable effect on the
goodness-of-fit of the model. Thus, in many cases the parameters of the full model will not
all be identifiable making it very hard to meaningfully compare the parameter values between
experiments. In addition, we have found that many variants of the model in which slightly
different assumptions are made (e.g., with respect to what happens with items in the buffer
on the second presentation) will produce more or less similar results. Thus, it appears that the
data of these experiments do not completely determine the exact form of the model. However,
we have not been able to come up with a completely satisfactory rationale that would clearly
favor one version over another on theoretical or empirical grounds. In conclusion then, despite
the fact that the data that we have fitted represent the best data sets available (being based
on relatively large numbers of observations and varying relevant dimensions such as spacing
and retention intervals in a parametric manner), many of the nitty-gritty details can only be
defended on such grounds as simplicity and elegance.

As mentioned in the introduction, the present application of SAM in combination with the
results presented in previous papers shows that the SAM theory provides a general framework
that can successfully explain a large number of the basic findings in a variety of episodic memory
paradigms. In that sense, the SAM project has more than fulfilled its initial aims and hopes. We
are now in a position to see whether it is possible to extend the framework to paradigms from
other areas of human memory, in particular semantic memory and implicit memory phenomena.
In recent years, we have been working on various projects to develop models for priming
effects in perceptual identification and lexical decision based on the REM framework (see e.g.,
Raaijmakers & Shiffrin, 2002; Schooler et al., 2001; Wagenmakers et al., 2001). As mentioned
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before, the REM model is closely similar to SAM (especially with respect to recall paradigms).
It is of some interest to note that the REM approach to semantic memory assumes that semantic
memory arises out of episodic memory traces due to the adding of information to previously
stored traces. Thus, the present assumption regarding the importance of study-phase retrieval
effects may have a much broader significance than the prediction of spacing effects alone.
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